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Pion vector and scalar form factors with dynamical overlap quarks T. Kaneko

1. Introduction

One of the major goals of lattice QCD is a precise determination of hadron form factors.
Electromagnetic (EM) and scalar form factors of pions and kaons are fundamental observables in
hadron physics. A detailed comparison between their chiralbehavior on the lattice and that in
chiral perturbation theory (ChPT) may provide a good testing ground for these theoretical tools as
well as a determination of unknown parameters in ChPT, namely the low-energy constants (LECs).
Reliable calculation of the form factors of semileptonic weak decays, such as theK→πlν decays,
is important in the search for new physics through a precise determination of CKM matrix elements.

In this article, we report on our calculation of these light meson form factors. Chiral symmetry
is exactly preserved in our simulations, that enables us to directly compare our results with ChPT.
We use the all-to-all quark propagator in order to accurately calculate connected and disconnected
correlators of pions and kaons.

2. Numerical simulations

Our gauge ensembles ofN f =2+1 QCD are generated using the Iwasaki gauge and the overlap
quark actions with a topology fixing term [1], which remarkably reduces the computational cost.
While we only explore the trivial topological sector at the moment, the effect of fixing topology
on the pion form factors turned out to be under control, typically a few %, in our previous study in
two-flavor QCD [2]. The lattice size isN3

s ×Nt =163×48 and the lattice spacing is 0.112(1) fm with
theΩ baryon mass used as input. We simulate four values of degenerate up and down quark masses
mud =0.015, 0.025, 0.035 and 0.050, which cover a range of the pion mass 310.Mπ [GeV]. 560.
Measurements of the form factors are carried out with the periodic boundary condition at a single
value of the strange quark massms =0.080, which is very close to the physical value 0.081 fixed
from MK. We have accumulated 2,500 HMC trajectories at each combination of mud andms.

We calculate meson correlators using the all-to-all quark propagator [3]. Let us consider an
expansion of the propagator using the eigenmodes(λk,uk) (k=1, . . . ,12N3

s Nt) of the overlap-Dirac
operator, namelyD−1(x,y) = ∑k λ−1

k uk(x)u
†
k(y). It is expected that low-lying modes dominantly

contribute to low-energy observables, such as the form factors. We exactly evaluate this important
contribution by using 160 eigenmodes for each configuration. Remaining contribution from the
higher modes is estimated stochastically by using the noisemethod. We refer readers to Ref. [2]
for further details on our measurement method using the all-to-all propagator.

We calculate three- and two-point functions

CPOP′
φφ ′ (∆t,∆t ′,p,p′) =

1
NtN3

s
∑
x,t

∑
x′,x′′

〈P′
φ ′(x′′, t + ∆t + ∆t ′)O(x′, t + ∆t)P†

φ (x, t)〉

×e−ip′(x′′−x′)−ip(x′−x), (2.1)

CPP′
φφ ′(∆t,p) =

1
NtN3

s
∑
x,t

∑
x′
〈P′

φ ′(x′, t + ∆t)P†
φ (x, t)〉e−ip(x′−x), (2.2)

whereP†
φ (P′†

φ ′ ) represents an interpolating operator for the initial (final) meson with a smearing
functionφ (φ ′), andO is either the EM current (Jµ ), weak current (Vµ ), or scalar operator (S). Using
the all-to-all propagator, we can accurately calculate these correlators by taking the average over
the location of the meson source, namely(x, t) in Eqs. (2.1) and (2.2). In addition, the correlators
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Figure 1: Left panel: effective valueFπ+

V (∆t,∆t ′;q2) with local (open symbols) and smeared operators for
pion source and sink (filled symbols). Note that we can take arbitrary combinations of(∆t,∆t ′) by using the
all-to-all propagator. Right panel :Fπ+

V (q2) as a function ofq2. We also plot theq2 dependence expected
from the VMD hypothesis by the dashed line.

with different choices ofφ (′) andp(′) can be calculated with small additional costs. In this study, we
take two choices ofφ (′), namely localφl(r)=δr,0 and exponential functionsφs(r)=e−0.4r, and 27
choices ofp(′) with |p(′)|≤

√
3, which cover a region of the momentum transfer−2.0.q2[GeV2].

0. Note that meson momentap(′) are shown in units of 2π/(Nsa) in this article.

3. Electromagnetic form factors

We calculate an effective value of the pion EM form factor from

Fπ+

V (∆t,∆t ′;q2) =
2Mπ

Eπ(|p|)+ Eπ(|p′|)
RπJπ

φφ ′ (∆t,∆t ′;q2)

RπJπ
φφ ′ (∆t,∆t ′;0)

, (3.1)

RπJπ
φφ ′ (∆t,∆t ′;q2) =

CπJπ
φφ ′ (∆t,∆t ′;p,p′)

Cππ
φφl

(∆t;p)Cππ
φlφ ′(∆t ′;p′)

, (3.2)

where we use the dispersion relation to estimateEπ(|p|) =
√

M2
π + p2 at |p| 6= 0. As shown in

the left panel of Fig. 1 we can reliably identify the plateau of Fπ+

V (∆t,∆t ′;q2) by using different
combination of the smearing functions(φ ,φ ′). The EM form factorFπ+

V (q2) is determined by a
constant fit toFπ+

V (∆t,∆t ′;q2). The statistical accuracy is typically a few % because of theaverage
over the source location mentioned above. Although we ignore the finite volume correction to
Fπ+

V (q2) in this preliminary report, it turned out to be comparable with the statistical error of a few
% level in our previous study in two-flavor QCD at similar values ofmud andNsa [2].

As seen in the right panel of Fig. 1, theq2 dependence ofFπ+

V (q2) is close to theρ meson pole
1/(1−q2/M2

ρ) expected from the vector meson dominance (VMD) hypothesis.We then assume
that the small deviation due to the higher poles or cuts can beapproximated by a polynomial ofq2,
and use a parametrization

Fπ+

V (q2) =
1

1−q2/M2
ρ

+ c1q2 + c2(q2)2 = 1+
1
6
〈r2〉π+

V q2 + · · · . (3.3)

to determine the pion charge radius〈r2〉π+

V . Since the deviation ofFπ+

V (q2) from VMD is small, we
obtain reasonableχ2/d.o.f.∼1, and〈r2〉π+

V does not change significantly by the inclusion of higher
order corrections ofO(q6).
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At NLO of SU(3) ChPT,〈r2〉π+

V is given by [4]

〈r2〉π+

V =
1

2NF2
0

(−3+24N Lr
9)−2νπ −νK , νP =

1

2NF2
0

ln

[

M2
P

µ2

]

(P=π,K), (3.4)

whereN=(4π)2 and the renormalization scale
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Figure 2: Chiral extrapolation of〈r2〉π+

V using the one-
loop formula (3.4) (dashed line) and that with a higher
order analytic term (solid line). The experimental value
[7] is plotted by a star.

µ is set to 4πF0. We fix F0 to 52 MeV de-
termined from our study of the meson decay
constants [5]. This is significantly smaller
than the phenomenological value∼ 88 MeV
[6] and enhances the chiral logarithmsνπ,K .
As shown in Fig. 2, the NLO formula fails
to reproduce the quark mass dependence of
our data (dashed line). The extrapolation be-
comes consistent with experiment by includ-
ing a NNLO analytic term∝ M2

π (solid line).
We note that significant NNLO contributions
have been observed also in our two-flavor stud-
ies in a similar region ofmud [2].

The kaon EM form factors are calculated from the ratios (3.1)and (3.2) but with kaon source
and sink. Results are plotted as a function ofq2 in Fig. 3. The neutral kaon form factorFK0

V (q2)

originates from a difference between the contributions from the down (̄dγµd) and strange quark
currents (¯sγµs), and is much smaller than the charged oneFK+

V (q2). We obtain significant signal
for FK0

V (q2) with our statistical accuracy improved by using the all-to-all propagator. Similar to
Fπ+

V (q2), theq2 dependence of bothFK+

V (q2) andFK0

V (q2) is close to that of VMD

FK+

V (q2) =
2
3

1
1−q2/M2

ρ
+

1
3

1

1−q2/M2
φ
, FK0

V (q2) = −1
3

1
1−q2/M2

ρ
+

1
3

1

1−q2/M2
φ
. (3.5)

We determine charge radii,〈r2〉K+

V and〈r2〉K0

V , using a fitting form with these vector meson poles
plus a polynomial correction up toO(q4).
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Figure 3: Electromagnetic form factors of charged (left panel) and neutral kaons (right panel) as a function
of q2. Dashed lines show the pole dependence of Eq.(3.5).
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Figure 4: Chiral extrapolation of charge radii of charged (left panel) and neutral kaons (right panel). Crosses
and stars are experimental values [7].

Figure 4 shows the chiral extrapolation of〈r2〉K+

V and〈r2〉K0

V based on NLO ChPT

〈r2〉K+

V =
1

2NF2
0

(−3+24NLr
9)−νπ −2νK , 〈r2〉K0

V = νπ −νK . (3.6)

For K+, we again observe that the NLO fit leads to a large value ofχ2/d.o.f.∼3.2. The extrapola-
tion becomes closer to experiment with acceptableχ2/d.o.f. (∼ 0.6) by including a NNLO analytic
term.

SinceK0 does not directly couple to photons, the NLO expression of〈r2〉K0

V does not have
analytic terms and henceO(p4) LECs. The dashed line in the right panel of Fig. 4 is a parameter-
free prediction withF0 determined from the decay constants. Our data are consistent with this
NLO prediction. For a more rigorous comparison, calculations with twisted boundary conditions
are currently underway to reduce the large systematic uncertainty due to the lack of data nearq2=0.

4. Pion scalar form factor

In this report, we consider the scalar form factor normalized at a reference value ofq2
ref, namely

Fπ
S (q2)/Fπ

S (q2
ref), since it has sufficient information to determine the scalarradius〈r2〉π

S and does
not need a non-perturbative renormalization ofS. We set|q2

ref| to our smallest non-zero|q2|, where
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Figure 5: Left panel:Fπ
S (q2)/Fπ

S (q2
ref) as a function ofq2. Right panel: chiral extrapolation of〈r2〉π

S . The
star shows a phenomenological estimate fromππ scattering [8].
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we do not need to subtract the contribution from the vacuum expectation value ofS. In the left
panel of Fig. 5, we plotFπ

S (q2)/Fπ
S (q2

ref) determined from ratios similar to Eqs. (3.1) and (3.2) (see
Ref. [2] for details). Due to the lack of the knowledge of scalar resonances at the simulated quark
masses, we parametrize theq2 dependence ofFπ

S (q2) by a generic polynomial form

Fπ
S (q2) = Fπ

S (0)

(

1+
1
6
〈r2〉π

S q2 + d2(q
2)2 + d3(q

2)3 + d4(q
2)4

)

. (4.1)

We then fit results for〈r2〉π
S to the NLO chiral expansion

〈r2〉π
S =

1

NF2
0

{−8+24N (2Lr
4 + Lr

5)}−12νπ −3νK . (4.2)

The pion-loop logarithm is 6 times larger than that in〈r2〉π+

V and is further enhanced by our small
value ofF0. As shown in the right panel of Fig.5, the NLO expression has astrongmud dependence
and can not describe our data leading toχ2/d.o.f. ∼ O(100). This is largely reduced to∼ 7 by
including a NNLO analytic term∝ M2

π suggesting that the consistency withSU(3) ChPT should
be studied by including full NNLO corrections as in our previous study in two-flavor QCD [2].

5. Kaon weak decay form factors
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Figure 6: Effective value ofξ extracted from ratio
Eq. (5.1).

We calculate the vector and scalar form
factors of theK → π decays, namelyf+(q2)

and f0(q2)= f+(q2) + f−(q2)q2/(M2
K −M2

π),
by using ratios of kaon and pion correlators
proposed in previous studies [9]. For instance,
ξ (q2)= f−(q2)/ f+(q2), which is needed to con-
vert f+(q2) to f0(q2) (and vice versa), is deter-
mined from a double ratio

CKVkπ
φφ ′ (∆t,∆t ′,p,p′)CKV4K

φφ ′ (∆t,∆t ′,p,p′)

CKV4π
φφ ′ (∆t,∆t ′,p,p′)CKVkK

φφ ′ (∆t,∆t ′,p,p′)
. (5.1)

This involves the three-point functions with spatial componentsVk and non-zero meson momenta
p(′), that are quite noisy if naively calculated. By using the all-to-all propagator, we obtain a clear
signal forξ (q2) as shown in Fig. 6. Both off+(q2) and f0(q2) are determined with the statistical
accuracy of typically a few % even at nonzerop(′).

We plot f0(q2) as a function ofq2 in the left panel of Fig.7. Theq2 dependence of bothf+,0(q2)

is well described by either the single pole or quadratic form

fX(q2) =
fX

1−q2/M2
X

, fX(q2) = 1+ cX q2 + dX(q2)2 (X = +,0), (5.2)

The normalized slopesλ ′
X = M2

π,physcX are measured in recent experiments [7]. Our resultsλ ′
+ =

2.01(25)×10−2 andλ ′
0=1.54(20)×10−2 extrapolated toMπ,phys are in good agreement with the

experiments as shown in the right panel of Fig. 7. We also observe that the normalized curvature
λ ′′

+ = 2M4
π,physd+ = 0.08(10)×10−2 is also consistent with the experimental value 0.20(5)×10−2.
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Figure 7: Left panel: f0(q2) as a function ofq2. The solid line shows the quadratic parametrization in
Eq. (5.2). Right panel: linear chiral extrapolation ofλ ′

0 compared with experiment [7].

6. Conclusions

We report on our calculation of the light meson form factors in three-flavor QCD with overlap
quarks. For the EM and scalar form factors, we observe that the mild mud dependence of our data
can not be described by NLO ChPT. We are planning to extend ouranalysis to NNLO. To this end,
it is helpful to calculate various observables in order to constrain manyO(p4) andO(p6) LECs
involved in NNLO chiral expansions. For instance, we calculate the kaon EM form factors with
small additional costs using the all-to-all propagator.

We also confirm that the shape of theK→π decay form factor is in good agreement with ex-
periment. Our calculations are being extended to a larger volume with twisted boundary conditions
in order to carry out a chiral extrapolation off+(0) with controlled systematic uncertainties, which
is essential for a reliable estimate of|Vus|.

Numerical simulations are performed on Hitachi SR11000 andIBM System Blue Gene Solu-
tion at High Energy Accelerator Research Organization (KEK) under a support of its Large Scale
Simulation Program (No. 09/10-09). This work is supported in part by the Grant-in-Aid of the
Ministry of Education, Culture, Sports, Science and Technology (No. 21674002, 21684013 and
220340047) and the Grant-in-Aid for Scientific Research on Innovative Areas (No. 20105001,
20105002, 20105003 and 20105005)
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