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The variational method allows one to study the mixing of interpolators with different chiral trans-

formation properties in the nonperturbatively determinedphysical state. It is then possible to

define and calculate in a gauge-invariant manner the chiral as well as the partial wave content

of the quark-antiquark component of a meson in the infrared,where mass is generated. Using a

unitary transformation from the chiral basis to the2S+1LJ basis one may extract the partial wave

content of a meson. We present results for theρ- andρ ′-mesons using a simulation withNf = 2

dynamical quarks, all for lattice spacings close to 0.15 fm. Our results indicate a strong chiral

symmetry breaking in theρ state and its simple3S1-wave composition in the infrared. For theρ ′-

meson we find a small chiral symmetry breaking in the infraredas well as a leading contribution

of the3D1 partial wave, which is contradictory to the quark model.
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1. Introduction

A central question in QCD is the mass generation mechanism and its interconnection with con-
finement and chiral symmetry breaking. The angular momentum generation ofhadrons is another
related question. Chiral symmetry is dynamically broken in the QCD vacuum which is evidenced
by the absence of parity doublets in the low-lying hadron spectrum and by the existence of the
pion as a pseudo Goldstone boson. It follows from the trace anomaly that the hadron mass al-
most completely consists of the energy of the quantized gluonic field. However, this statement
tells us nothing about mechanism of mass generation. It is widely believed thatthe spontaneous
breaking of chiral symmetry, i.e., the quark condensate of the vacuum, is prominently responsible
for the mass generation of hadrons like the nucleon orρ-meson. This was observed in various
microscopical models and in the QCD sum rule approach [1, 2].

Chiral symmetry breaking in the vacuum explains a phenomenological success of the quark
model, at least for the ground states. Namely, almost massless light quarks acquire their effective
(dynamical, constituent) mass at low momenta via their coupling with the quark condensate. This
large mass renders the problem effectively non-relativistic and the ground stateρ is a3S1 state in
the quark model language [3, 4]. Traditionally the excitation spectrum is alsodescribed within the
quark model and the first excited state of theρ-meson,ρ(1450), is believed to be the first radial
excitation, i.e., a3S1 state [3, 4].

At the same time there are indications that chiral symmetry is effectively restored in the high-
lying spectrum [5, 6]. This would imply that the mass generation mechanism in highly excited
hadrons is different and the quark condensate of the vacuum is of little importance. It would also
imply that the constituent quark model language is inadequate for excited hadrons. To resolve the
issue one needs direct information about the hadron structure, which can be supplied in ab initio
lattice simulations. Here we present a way to reconstruct in dynamical simulationsa chiral as well
as an angular momentum decomposition of the leading quark-antiquark component of mesons at
physical, infrared scale.

The variational method [7] provides a tool to study the hadron wave function in lattice QCD
calculations. One uses a set of interpolators{O1,O2, . . . ,ON}, which have the quantum numbers
of the state of interest, and computes the cross-correlation matrix,

Ci j (t) =
〈

Oi(t) O†
j (0)

〉

. (1.1)

One solves a generalized eigenvalue problem; assuming that the set of interpolators{Oi} is com-
plete enough, the wave function is related to the eigenvectors obtained. We are interested in the
reconstruction of the leading quark-antiquark component of the low lying mesons. Therefore we
need interpolators that allow us to define such a component in a unique way.

In [5] a classification of all non-exotic quark-antiquark states (interpolators) in the light meson
sector according to the transformation properties with respect to theSU(2)L ×SU(2)R andU(1)A

was presented. If no explicit excitation of the gluonic field with non-vacuumquantum numbers is
present, this basis is a complete one for a quark-antiquark system and we can define and investi-
gate chiral symmetry breaking. Namely, one can reconstruct a decomposition for a given meson
in terms of different representations of the chiral group by diagonalizingthe cross-correlation ma-
trix from (1.1). The eigenvectors describe the quark-antiquark content in terms of different chiral
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representations. If we observe components with different transformation properties in terms of
SU(2)L ×SU(2)R andU(1)A, then we conclude that chiral symmetry is broken in that state.

In order to establish a connection to the quark model, it is interesting to reconstruct the meson
composition in terms of the2S+1LJ basis, whereJ = L +Sare the standard angular momenta in the
two-body system. Such a decomposition of the leading quark-antiquark component in terms of the
2S+1LJ basis in the infrared, i.e., where the hadron mass is generated, would tell usto which degree
the quark model language is adequate for a given state.

The2S+1LJ angular momentum basis and the chiral basis are both complete for a two-particle
system. They are connected to each other via a unitary transformation [8].Each state of the
chiral basis can be uniquely represented in terms of the2S+1LJ states. Then, diagonalizing the
cross-correlation matrix, built from interpolators with definite chiral transformation properties, one
can obtain the partial wave decomposition of the leading Fock component. This method can in
principle be applied to any meson, here we use as an example the vector mesonρ and its first
excitationρ(1450) [9, 10].

2. Chiral classification and the transformation to the angular momentum basis

The classification of the quark-antiquark states and interpolators with respect to representations
of SU(2)L ×SU(2)R was done in [5]. We are interested in the quark-antiquark component of
the ground stateρ-meson and its first excitation. There are two possible chiral representations
that are compatible with the quantum numbers of theρ-meson, which have drastically different
chiral transformation properties. Assuming that chiral symmetry is not broken, then one has two
independent states. The first state is|(0,1)⊕ (1,0); 11−−〉; it can be created from the vacuum by
the standard vector current

OV = qγ i~τ q . (2.1)

Its chiral partner is thea1 meson. The other state is|(1/2,1/2)b; 11−−〉, which can be created by
the pseudotensor operator,

OT = qσ0i~τ q , (2.2)

and its chiral partner is theh1 meson. Here,~τ denotes the vector of isospin Pauli matrices.
Chiral symmetry breaking in the state implies that the state should be a mixture of bothrepre-

sentations. If it is a superposition of both representations with approximatelyequal weights, then
the chiral symmetry is maximally violated in this state. If, on the contrary, one of therepresen-
tations strongly dominates over the other representation, one could speak about effective chiral
restoration in this state.

These chiral representations can be transferred into the2S+1LJ basis, using the unitary trans-
formation [8]

(

|(0,1)⊕ (1,0); 11−−〉

|(1/2,1/2)b; 11−−〉

)

= U ·

(

|1; 3S1〉

|1; 3D1〉

)

, (2.3)

whereU is given by

U =





√

2
3

√

1
3

√

1
3 −

√

2
3



 . (2.4)
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Thus, using the interpolatorsOV andOT from (2.1) and (2.2) for the diagonalization of the
cross-correlation matrix, we are able to reconstruct the partial wave content of the leading ¯qq-Fock
component of theρ-meson.

3. Reconstruction of the wave function using the variational method

We briefly want to discuss the basic features of the variational method [7] and how to analyse the
decomposition of theρ-mesons. The time propagation properties of the normalized physical states
|n〉 are given by

〈n(t)|m(0)〉 = δnme−En t . (3.1)

The lattice interpolatorsOi are typically not normalized and are projected to zero spatial momen-
tum. The cross-correlation matrix from Eq. (1.1) can be written as

Ci j (t) =
〈

Oi(t)O†
j (0)

〉

= ∑
n

a(n)
i a(n)∗

j e−En t , (3.2)

where the coefficientsa(n)
i give us the overlap of the physical state|n〉 with the lattice interpolator

Oi ,
a(n)

i = 〈0|Oi |n〉 . (3.3)

The two chiral representations(0,1)⊕ (1,0) and(1/2,1/2)b form a complete and orthogonal basis
(with respect to the chiral group) forρ-mesons. Consequently, using the variational method we are
able to study the mixing of the two representations in bothρ andρ ′ states.

Following the lines of [9] one can show that the ratio of couplings can be obtained as

a(n)
i (t)

a(n)
k (t)

=
Ci j (t)u(n)

j (t)

Ck j(t)u(n)
j (t)

. (3.4)

The ratio of the vector to pseudotensor couplings,a(n)
V /a(n)

T , tells us about the chiral symmetry-
breaking in the statesn = ρ,ρ ′.

4. Defining the resolution scale

If we probe the hadron structure with the local interpolators, then we studythe hadron decompo-
sition at the scale fixed by the lattice spacinga. For a reasonably smalla this scale is close to the
ultraviolet scale. However, we are interested in the hadron content at theinfrared scales, where
mass is generated. For this purpose we cannot use a largea, because matching with the continuum
QCD will be lost. Given a fixed, reasonably small lattice spacinga a large infrared scaleR (i.e.,
small resolution scale 1/R) can be achieved by gauge-invariant smearing of the point-like interpo-
lators. We smear the quark field (sources) in spatial directions over the size R in physical units,
such thatR/a≫ 1. Then, even in the continuum limita→ 0 we probe the hadron content at the
infrared scale fixed byR. Such a definition of the resolution is similar to the experimental one,
where an external probe is sensitive only to quark fields (it is blind to gluonic fields) at a resolution
that is determined by the momentum transfer in spatial directions.
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Set βLW am0 #conf a [fm] mπ [MeV] mρ [MeV]

A 4.70 -0.050 200 0.1507(17) 526(7) 911(11)
B 4.65 -0.060 300 0.1500(12) 469(5) 870(10)
C 4.58 -0.077 300 0.1440(12) 323(5) 795(15)

Table 1: Details of the lattice simulation: the leading valueβLW of the gauge coupling, the bare mass pa-
rameteram0 of the CI action, the number of analyzed configurations, the lattice spacinga, the pseudoscalar
massmπ , and the vector meson massmρ (cf. [13] for more details).

The smearing procedure itself is done using Jacobi smearing [11]. A smearing operatorM acts
on a point-like sourceS0,

S= M S0 , M =
N

∑
n=0

(κ H)n . (4.1)

The hopping termH is given by

H =
3

∑
k=1

[

Uk(x, t)δx+k̂,y +U†
k (x− k̂, t)δx−k̂,y

]

. (4.2)

It creates approximately a Gaussian profile of the widthR for each quark field of the smeared
interpolator.

5. Lattice simulation details and results

Like in our previous analysis of excited hadrons [12, 13], we use the Lüscher-Weisz gauge action
[14] and the Chirally Improved (CI) Dirac operator, which has better chiral properties than the
Wilson Dirac operator [15]. For this study three sets of dynamical gauge configurations, all for
lattice size of 163×32, including two mass-degenerate light sea quarks are used (for detailssee
Tab. 1).

We include in our cross-correlation matrix the four interpolators

O1 = un γ i dn , O2 = uw γ i dw , (5.1)

O3 = un γ t γ i dn , O4 = uw γ t γ i dw . (5.2)

Hereγ i denotes one of the spatial Dirac matrices andγ t theγ-matrix in (Euclidean) time direction.
The subscriptsn andw (for narrow and wide) denote the two smearing widths,R≈ 0.34 fm and
0.67 fm, respectively. With these interpolators we are able to extract both the ground state mass
and the mass of the first excited state of theρ-meson, see the l.h.s. of Fig. 1.

On the r.h.s. of Fig. 1 we show theR-dependence of the ratio from Eq. (3.4) for the case
aV/aT both for the ground stateρ-meson and its first excited state. This ratio of the vector to the
pseudotensor coupling to the states shows us their decomposition in terms of the(0,1)⊕ (1,0)

and (1/2,1/2)b representations. For the ground state at the largest value ofR≈ 0.67 fm this
ratio is approximately 1.2, i.e., we see a strong mixture of the two representations in the wave
function of the ground stateρ-meson. Inverting the unitarity transformation from Eq. (2.3) results
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Figure 1: L.h.s.: The vector meson massmV is plotted againstm2
π for all three sets. Black circles represent

the ground state,ρ , and red squares represent the first excitation,ρ ′. The experimental values are depicted as
magenta crosses with decay width indicated. R.h.s.: The ratio aV/aT is plotted against the smearing width
R for all three data sets. Black circles represent the ground state and red squares the first excitation. Broken
lines are drawn only to guide the eye (color online).

in the fact that the vector meson is predominantly a3S1 state with a tiny admixture of a3D1 wave,
0.997|3S1〉−0.073|3D1〉. This result indicates that theρ(770) at the scale fixed by the meson size
is approximately a3S1 state – in agreement with the quark model language.

However, the situation changes for the first excited state,ρ ′ = ρ(1450). In this case a strong
dependence of the ratio on the infrared scale is observed. Extrapolatingthe results to the scale of the
ρ ′ size,R∼ 0.8−1 fm, one expects a significant contribution from the(1/2,1/2)b representation
and a contribution of the other representation is suppressed. This indicates a smooth onset of
effective chiral restoration.

The interpretation is as follows. From the conformal symmetry of QCD one expects that in
the deep ultraviolet the pseudotensor interpolator decouples from theρ-mesons. This can also
be seen from the non-vanishing anomalous dimension of the pseudotensoroperator, implying its
decoupling in the ultraviolet limit. Thus, the ratioaV/aT must increase for smallR. At largeR
the ratio determines a degree of chiral symmetry breaking in the infrared region, where mass is
generated.

In the ρ(770) meson chiral symmetry is strongly broken since this state is a strong mixture
of (0,1)⊕ (1,0) and (1/2,1/2)b with approximately equal weights. Consequently, its “would-
be chiral partners” have a much larger mass:a1(1260) andh1(1170). To these low lying states
we cannot assign any chiral representation. For theρ(1450) the contribution from(1/2,1/2)b is
much bigger than the contribution of the other representation. One then predicts that in the same
energy region there must exist anh1 (and not ana1) meson as an approximate chiral partner of
ρ(1450). And in fact there is a stateh1(1380) and noa1 state in the same energy region. The second
excitedρ-meson, theρ(1700), should then be dominated by the representation(0,1)⊕ (1,0). This
assumption is favored by the existence of thea1(1640) state. There is no room for thisa1(1640)
meson within the the quark model [3, 4].

Although we do not have the precise value of the ratioaV/aT for ρ(1450) at largeR∼ 0.8−
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1fm, it is indicative that this value is small. Then we are able to give a qualitative estimate for the
angular momentum content of theρ(1450) in the infrared. Assuming a vanishing ratio the state
would have the following partial wave content,

√

1
3
|3S1〉−

√

2
3
|3D1〉 . (5.3)

This shows a leading contribution of the3D1 wave. Possible small deviations of the ratio from zero
do not change this qualitative conclusion. This result is inconsistent withρ ′ to be a radial excitation
of the ground stateρ-meson, i.e., an3S1 state, as predicted by the quark model [3, 4].
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