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of the3D; partial wave, which is contradictory to the quark model.

The XXVIII International Symposium on Lattice Field Thedattice2010
June 14-19, 2010
Villasimius, Italy

*Speaker.

(© Copyright owned by the author(s) under the terms of the Cre&@vmmons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/


mailto:leonid.glozman@uni-graz.at
mailto:christian.lang@uni-graz.at
mailto:markus.limmer@uni-graz.at

The chiral and angular momentum content of thenesons in lattice QCD Markus Limmer

1. Introduction

A central question in QCD is the mass generation mechanism and its intertonn&ith con-
finement and chiral symmetry breaking. The angular momentum generati@uiins is another
related question. Chiral symmetry is dynamically broken in the QCD vacuumhvigevidenced
by the absence of parity doublets in the low-lying hadron spectrum andebgxistence of the
pion as a pseudo Goldstone boson. It follows from the trace anomaly #hdtatiron mass al-
most completely consists of the energy of the quantized gluonic field. Howtbig statement
tells us nothing about mechanism of mass generation. It is widely believeththapontaneous
breaking of chiral symmetry, i.e., the quark condensate of the vacuungrsmpently responsible
for the mass generation of hadrons like the nucleop-oneson. This was observed in various
microscopical models and in the QCD sum rule approfcH [1, 2].

Chiral symmetry breaking in the vacuum explains a phenomenologicalsiot¢he quark
model, at least for the ground states. Namely, almost massless light qugtkeeaheir effective
(dynamical, constituent) mass at low momenta via their coupling with the quarlensate. This
large mass renders the problem effectively non-relativistic and thendrsiatep is a3S; state in
the quark model languagh [B, 4]. Traditionally the excitation spectrum isdalseribed within the
quark model and the first excited state of fheneson,p(1450), is believed to be the first radial
excitation, i.e., 5, state [B[}].

At the same time there are indications that chiral symmetry is effectively resitotbe high-
lying spectrum [[5[]6]. This would imply that the mass generation mechanism Imyhégcited
hadrons is different and the quark condensate of the vacuum is of littleriampe. It would also
imply that the constituent quark model language is inadequate for excitedrisad’o resolve the
issue one needs direct information about the hadron structure, whichecaupplied in ab initio
lattice simulations. Here we present a way to reconstruct in dynamical simulathigal as well
as an angular momentum decomposition of the leading quark-antiquark cempairmesons at
physical, infrared scale.

The variational method][7] provides a tool to study the hadron wave funatitattice QCD
calculations. One uses a set of interpolatg@s, Oy, ...,On}, which have the quantum numbers
of the state of interest, and computes the cross-correlation matrix,

Cij(t) = (Oi(t) 0(0) ) . (1.1)

One solves a generalized eigenvalue problem; assuming that the set pdlmters{O; } is com-
plete enough, the wave function is related to the eigenvectors obtainedreWeexested in the
reconstruction of the leading quark-antiqguark component of the low lyingpme Therefore we
need interpolators that allow us to define such a component in a unique way.

In [B] a classification of all non-exotic quark-antiquark states (intetpain the light meson
sector according to the transformation properties with respect t8Uk2), x SU(2)gr andU (1)a
was presented. If no explicit excitation of the gluonic field with non-vacgurntum numbers is
present, this basis is a complete one for a quark-antiquark system arahvaefine and investi-
gate chiral symmetry breaking. Namely, one can reconstruct a decompdsitia given meson
in terms of different representations of the chiral group by diagonalitiagross-correlation ma-
trix from ([L.]). The eigenvectors describe the quark-antiquark coirtearms of different chiral
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representations. If we observe components with different transfonrmptiperties in terms of
SU(2). x SU(2)r andU (1), then we conclude that chiral symmetry is broken in that state.

In order to establish a connection to the quark model, it is interesting to tegonthe meson
composition in terms of th&**1L; basis, wherd = L + Sare the standard angular momenta in the
two-body system. Such a decomposition of the leading quark-antiquarkoc@npin terms of the
2St1|  pasis in the infrared, i.e., where the hadron mass is generated, wouldttelvbgh degree
the quark model language is adequate for a given state.

The?S+1L; angular momentum basis and the chiral basis are both complete for a twdepartic
system. They are connected to each other via a unitary transformftiorEfg]h state of the
chiral basis can be uniquely represented in terms of¥h&_; states. Then, diagonalizing the
cross-correlation matrix, built from interpolators with definite chiral transfation properties, one
can obtain the partial wave decomposition of the leading Fock component. Tthisangan in
principle be applied to any meson, here we use as an example the vector mmasdnits first

excitationp(1450) [B, [L0].

2. Chiral classification and the transformation to the anguar momentum basis

The classification of the quark-antiquark states and interpolators witlegesp representations

of SU(2). x SU(2)r was done in[[5]. We are interested in the quark-antiquark component of
the ground stat@-meson and its first excitation. There are two possible chiral represaergtatio
that are compatible with the quantum numbers of phmeson, which have drastically different
chiral transformation properties. Assuming that chiral symmetry is notdorathen one has two
independent states. The first staté¢(®1) @ (1,0); 11~ 7); it can be created from the vacuum by
the standard vector current

Ov =0y T7q. (2.1)

Its chiral partner is the; meson. The other statelisl/2,1/2),; 11~ ), which can be created by
the pseudotensor operator,

Or=qo°7q, (2.2)

and its chiral partner is they meson. HereT denotes the vector of isospin Pauli matrices.
Chiral symmetry breaking in the state implies that the state should be a mixture aEpoth
sentations. If it is a superposition of both representations with approximeqely weights, then
the chiral symmetry is maximally violated in this state. If, on the contrary, one ofeihesen-
tations strongly dominates over the other representation, one could speatkedfective chiral
restoration in this state.
These chiral representations can be transferred intéStHé ; basis, using the unitary trans-

formation [§]
(0.1 @(1,0:11)\ _, [ 113%s)

whereU is given by

2 1
U= i 2 . (2.4)
3 \/3
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Thus, using the interpolato®, andOr from (2.]) and[(2]2) for the diagonalization of the
cross-correlation matrix, we are able to reconstruct the partial waverdoof the leadingig-Fock
component of th@-meson.

3. Reconstruction of the wave function using the variationamethod

We briefly want to discuss the basic features of the variational mefhoch§i7haw to analyse the
decomposition of the-mesons. The time propagation properties of the normalized physical states
In) are given by

(N(t)IM(0)) = Sume &t (3.1)

The lattice interpolator®; are typically not normalized and are projected to zero spatial momen-
tum. The cross-correlation matrix from E. {1.1) can be written as

Gi(t) =(0i(1)0](0)) = a”a e 5!, (3.2)

where the coefficientai(”) give us the overlap of the physical stété with the lattice interpolator
Gi,
™ — (00 3.3

g = (0[Gi[n). (3.3)
The two chiral representation®, 1) @ (1,0) and(1/2,1/2), form a complete and orthogonal basis
(with respect to the chiral group) f@-mesons. Consequently, using the variational method we are
able to study the mixing of the two representations in p#ndp’ states.

Following the lines of[[9] one can show that the ratio of couplings can bersatas

a" (1) Cu(t)UE”)(t).
a’ () Gymu ()

(3.4)

The ratio of the vector to pseudotensor couplin@fg),/a(T”), tells us about the chiral symmetry-
breaking in the statas= p, p’.

4. Defining the resolution scale

If we probe the hadron structure with the local interpolators, then we shelzadron decompo-
sition at the scale fixed by the lattice spacmg-or a reasonably smallthis scale is close to the
ultraviolet scale. However, we are interested in the hadron content atftheed scales, where
mass is generated. For this purpose we cannot use adaogeause matching with the continuum
QCD will be lost. Given a fixed, reasonably small lattice spa@raylarge infrared scalR (i.e.,
small resolution scale/R) can be achieved by gauge-invariant smearing of the point-like interpo-
lators. We smear the quark field (sources) in spatial directions over th® $izphysical units,
such thatR/a>> 1. Then, even in the continuum limit— O we probe the hadron content at the
infrared scale fixed byR. Such a definition of the resolution is similar to the experimental one,
where an external probe is sensitive only to quark fields (it is blind to giuads) at a resolution
that is determined by the momentum transfer in spatial directions.
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Set Biw amy #conf  a[fm] my [MeV]  m, [MeV]

A 470 -0.050 200 0.1507(17) 526(7) 911(11)
B 4.65 -0.060 300 0.1500(12) 469(5) 870(10)
C 458 -0.077 300 0.1440(12) 323(5) 795(15)

Table 1: Details of the lattice simulation: the leading val@gy of the gauge coupling, the bare mass pa-
rameteramy of the Cl action, the number of analyzed configurations, ltticke spacing, the pseudoscalar
massmy, and the vector meson masg (cf. [lL3] for more details).

The smearing procedure itself is done using Jacobi smedrihg [11]. AlsmeperatoM acts
on a point-like sourcé&,

z

S=MS, M= (kH)". (4.1)

n—=

The hopping ternid is given by
3 ~
Z [Uk(x,1) 8,y +Up (x—k 1) 8¢ ] - (4.2)

It creates approximately a Gaussian profile of the wigtfor each quark field of the smeared
interpolator.

5. Lattice simulation details and results

Like in our previous analysis of excited hadrohd [fL3, 13], we use tisehér-Weisz gauge action
[L4] and the Chirally Improved (CI) Dirac operator, which has betterathiroperties than the
Wilson Dirac operator[[15]. For this study three sets of dynamical gaogéigurations, all for
lattice size of 18 x 32, including two mass-degenerate light sea quarks are used (for demils

Tab.[1).

We include in our cross-correlation matrix the four interpolators

Or=ThY'dh.  O2=Tw)du, (5.1)
O3 =Un)' Y dn, Os=Tw YV du. (5.2)

Herey' denotes one of the spatial Dirac matrices ghtihe y-matrix in (Euclidean) time direction.
The subscripts andw (for narrow and wide) denote the two smearing widfRsy 0.34 fm and
0.67 fm, respectively. With these interpolators we are able to extract bothrtled) state mass
and the mass of the first excited state of themeson, see the I.h.s. of F[g. 1.

On the r.h.s. of Fig[]1 we show thHedependence of the ratio from Eq. (3.4) for the case
av/ar both for the ground state-meson and its first excited state. This ratio of the vector to the
pseudotensor coupling to the states shows us their decomposition in terms(6fthe (1,0)
and (1/2,1/2), representations. For the ground state at the largest vallR=00.67 fm this
ratio is approximately 2, i.e., we see a strong mixture of the two representations in the wave
function of the ground stafe-meson. Inverting the unitarity transformation from Eg.](2.3) results
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Figure 1: L.h.s.: The vector meson masy is plotted against, for all three sets. Black circles represent
the ground statgy, and red squares represent the first excitapénThe experimental values are depicted as
magenta crosses with decay width indicated. R.h.s.: The aafar is plotted against the smearing width
R for all three data sets. Black circles represent the grotatd and red squares the first excitation. Broken
lines are drawn only to guide the eye (color online).

in the fact that the vector meson is predominanthBastate with a tiny admixture of 2D; wave,
0.9973s;) —0.0733D;). This result indicates that th®(770) at the scale fixed by the meson size
is approximately &S, state — in agreement with the quark model language.

However, the situation changes for the first excited sfalte; p(1450). In this case a strong
dependence of the ratio on the infrared scale is observed. Extrapdlairgsults to the scale of the
p’ size,R~ 0.8—1 fm, one expects a significant contribution from {i¢2, 1/2),, representation
and a contribution of the other representation is suppressed. This ird&atmooth onset of
effective chiral restoration.

The interpretation is as follows. From the conformal symmetry of QCD onectgghat in
the deep ultraviolet the pseudotensor interpolator decouples fromp-thesons. This can also
be seen from the non-vanishing anomalous dimension of the pseudotgresator, implying its
decoupling in the ultraviolet limit. Thus, the ratéy /ar must increase for smaR. At largeR
the ratio determines a degree of chiral symmetry breaking in the infrarémhreghere mass is
generated.

In the p(770) meson chiral symmetry is strongly broken since this state is a strong mixture
of (0,1)® (1,0) and (1/2,1/2), with approximately equal weights. Consequently, its “would-
be chiral partners” have a much larger maag(1260) andh;(1170. To these low lying states
we cannot assign any chiral representation. Forgttiet50) the contribution from(1/2,1/2)y, is
much bigger than the contribution of the other representation. One theictpréftat in the same
energy region there must exist ap (and not ang;) meson as an approximate chiral partner of
p(1450. And in fact there is a statg (1380 and noa; state in the same energy region. The second
excitedp-meson, thgp(1700, should then be dominated by the representgiioh) & (1,0). This
assumption is favored by the existence of #1€1640) state. There is no room for thég (1640
meson within the the quark mod§] [3, 4].

Although we do not have the precise value of the rafigar for p(1450 at largeR ~ 0.8 —
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1fm, it is indicative that this value is small. Then we are able to give a qualitastuma&te for the
angular momentum content of tipg1450) in the infrared. Assuming a vanishing ratio the state
would have the following partial wave content,

ﬁ *Sn) — \E *D1) . (5-3)

This shows a leading contribution of tAB; wave. Possible small deviations of the ratio from zero
do not change this qualitative conclusion. This result is inconsisteniphtthbe a radial excitation
of the ground statp-meson, i.e., aRS; state, as predicted by the quark modg(]3, 4].
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