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TMDs such as the Sivers-function.

The XXVIII International Symposium on Lattice Filed Theory
June 14-19,2010
Villasimius, Sardinia Italy

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:bmusch@jlab.org
mailto:phaegler@ph.tum.de


P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
1
5
1
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1. Introduction

Generalized parton distribution functions (GPDs) and transverse momentum dependent parton
distribution functions (TMDs) provide us with a picture of the internal quark distributions in a
nucleon at the instant of an interaction, see illustration Fig. 1 a). GPDs and TMDs have their natural
interpretation at large nucleon momentum P = (0,0,Pz). The quark momentum k in terms of light
cone coordinates k± ≡ (k0± k3)/

√
2, k⊥ = (kx,ky) scales like k+ : k⊥ : k− ∼ P+ : 1 : (P+)−1 with

the large momentum component P+ of the nucleon. TMDs resolve the dependence on x≡ k+/P+

and transverse momentum k⊥, but not on the suppressed component k−. In spin-polarized channels
at leading twist, TMDs encode dipole- or quadrupole-shaped deformations of the nucleon in the k⊥-
plane. We have studied such deformations in first explorative lattice QCD calculations [1, 2, 3], see
Fig. 1 and our discussion below. These studies have been motivated by a history of successful lattice
computations of x-moments of GPDs, providing images of the nucleon in the impact parameter,
b⊥-, plane, see [4] for a review. A remaining theoretical problem concerns the precise form of the
correlator defining TMDs in the continuum, see [5, 6] and references therein. In its basic form, it
is given by [7]

Φ
[Γ]
q (x,k⊥;P,S;C )≡∫

dk−
∫ d4l

(2π)4 e−ik·l 1
2
〈P,S| q̄(l)Γ U [Cl] q(0) |P,S〉︸ ︷︷ ︸

Φ̃
[Γ]
q (l,P,S;C )

∣∣∣
k+=xP+

=
∫ dl−

2π
e−il−k+

∫ d2l⊥
(2π)2 eil⊥·k⊥ Φ̃

[Γ]
q (l,P,S;C )

∣∣∣
l+=0

=
1

P+

∫ d(l·P)
2π

e−i(l·P)x︸ ︷︷ ︸∫
X

∫ d2l⊥
(2π)2 eil⊥·k⊥︸ ︷︷ ︸∫

M

Φ̃
[Γ]
q (l,P,S;C )

∣∣∣
l+=0

(1.1)

where Γ is a Dirac matrix. The Wilson line U [Cl] running along a continuous path Cl from l to
0 ensures gauge invariance of the expression. For the SIDIS and Drell-Yan scattering process, the
Wilson line extends to infinity along a direction v, see Fig. 4 a) below, such that the cross section
factorizes into hard, perturbative parts and soft contributions. Based on its symmetry transforma-
tion properties, the above correlator can be parametrized in terms of TMDs [8, 9, 10], for example

2ρ
(q)
T L ≡Φ

[γ++λγ+γ5]
q = f1,q +λ

k⊥ ·S⊥
mN

g1T,q +

[
S jε jiki

mN
f⊥1T,q

]
odd

, (1.2)

2ρ
(q)
LT ≡Φ

[γ+−s jiσ+ jγ5]
q = f1,q +Λ

k⊥ · s⊥
mN

h⊥1L,q +

[
s jε jiki

mN
h⊥1,q

]
odd

. (1.3)

Here λ and s⊥ are longitudinal and transverse quark polarization, Λ and S⊥ longitudinal and trans-
verse nucleon polarization, and the leading-twist TMDs f1,q, g1T,q, f⊥1T,q, h⊥1L,q and h⊥1,q are real-
valued functions of x and k2

⊥. The “naively time-reversal odd” TMDs f⊥1T,q and h⊥1,q switch their
sign when comparing the SIDIS- with the Drell-Yan process, because the direction v of the Wilson
line changes from future- to past-pointing [11].
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Figure 1: a) Illustration of quark degrees of freedom in the nucleon at large momentum. b) Dipole-deformed
x-integrated densities obtained with straight gauge links at a pion mass mπ ≈ 500MeV. The insets display
the spin polarization of the quarks (red arrow) and of the nucleon (blue arrow).
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Figure 2: a) Representation of a straight Wilson line (dashed line) as a step-like product of link variables.
b) Amplitude Ã2(l2,0) for up quarks at a pion mass mπ ≈ 500MeV, using straight gauge links.

2. Straight link TMDs from the lattice

In light of the uncertainties about the precise form of the continuum correlator, and to develop
our methods, our first lattice studies employ a simple operator geometry that does not relate to a
specific scattering process: We connect the quark fields with a direct, straight Wilson line. For the
resulting “process-independent” TMDs, the T-odd functions f⊥1T,q and h⊥1,q vanish exactly.

In our approach, we calculate matrix elements 〈P,S|O |P,S〉 from ratios of three- and two-point
functions using the same techniques as GPD calculations by the LHP collaboration in Ref. [12].
We also use the same sequential propagators and quark propagators, calculated by LHPC with
domain-wall valence fermions on top of asqtad-improved staggered MILC gauge configurations
[13, 14, 15] with 2+1 quark flavors at a lattice spacing a≈ 0.12fm. The difference with respect to
GPD calculations is that we directly insert the non-local operator O≡ q̄(l)ΓU [Cl]q(0) in our three-
point function. The Wilson line U [Cl] is approximated as a step-like product of HYP-smeared
link-variables as illustrated in Fig. 2 a). See also Ref. [2, 3].

The connection between the matrix elements Φ̃[Γ] and TMDs is established through a parametriza-
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tion in terms of Lorentz-invariant amplitudes Ãi(l2, l·P). For straight Wilson lines, we obtain in
analogy to the parametrization in terms of amplitudes Ai(k2,k·P) in Ref. [8] (here our sign conven-
tions follow Ref. [10] with the substitution rule k→ im2

N l):

Φ̃
[γµ ] = 2Pµ Ã2 +2imN

2 lµ Ã3 ,

Φ̃
[γµ γ5] =−2mN Sµ Ã6−2imN Pµ(l ·S) Ã7 +2mN

3 lµ(l ·S) Ã8 ,

Φ̃
[iσ µν γ5] = 2P[µSν ] Ã9 +2im2

N l[µSν ] Ã10 +2m2
N l[µPν ](l ·S)Ã11 .

The TMDs are then obtained by

f1(x,k2
⊥) = 2

∫
X
∫
M Ã2(l2, l·P) , h1(x,k2

⊥) =−2
∫
X
∫
M Ã9m(l2, l·P) ,

h⊥1L(x,k
2
⊥) = 4m2

N∂k2
⊥

(∫
X
∫
M Ã10(l2, l·P)+∂x

∫
X
∫
M Ã11(l2, l·P)

)
,

g1T (x,k2
⊥) = 4m2

N∂k2
⊥

∫
X
∫
M Ã7(l2, l·P) ,

with Ã9m ≡ Ã9− 1
2 m2

N l2Ã11. In the equations above,
∫
X only acts on l·P, while

∫
M only acts on

l2. Thus x↔ l·P and k2
⊥↔ l2 are pairs of conjugate variables. Our Euclidean lattice approach is

restricted to the determination of amplitudes Ãi for l0 =−il4 = 0, i.e., to the region l2 < 0, |l·P| ≤√
−l2|P|, where P is the selected three-momentum of the nucleon on the lattice. The limited range

in |l·P| prohibits us from a direct evaluation of
∫
X . However, first studies of x- and k⊥- correlations

are possible [16, 3]. Moreover, x-integrated TMDs and densities are directly accessible: Integrating
Eq. (1.1) with respect to x removes

∫
X and sets l·P to zero. Correspondingly, the x-integral of, e.g.,

f1 becomes
∫ 1
−1 dx f1(x,k2

⊥) ≡ f [1]
1 (k2

⊥) = 2
∫
M Ã2(l2,0). In Fig. 2 b), open symbols correspond to

unrenormalized lattice data for Ã2(l2,0).
To obtain results independent of our lattice spacing a and our lattice action, we must renor-

malize our data. The Wilson line U [Cl] introduces a length dependent renormalization factor
exp(−δm

√
−l2) [17, 18, 19]. To fix δm, we follow the strategy of Refs. [20, 21], and match

the renormalized static quark potential V ren(r) = V (r)+ 2δm to the string potential Vstring = σr−
π/(12r) [22] at a matching point r = 1.5r0 ≈ 0.7fm. In Fig. 3 a), we test the method for several
lattice spacings a on four MILC lattices with similar pion masses mπ ≈ 500MeV. The renormal-
ized lattice data agree very well with each other and are approximated well by the string potential
(red dashed curve) near the matching point, indicated by a vertical dashed line. The procedure
implements a gauge-invariant renormalization condition that we can formulate as the demand that
the static quark potential asymptotically approach a straight line σr through the origin (shown as
a red dashed line). In connection with TMDs, we lack at present an interpretation of this renor-
malization condition as a physical renormalization or factorization scale. In Figure 3 b), we check
the applicability of the approach to Wilson lines by plotting Y ren

line(l) =− ln(Ul+a/2/Ul−a/2)/a+δm,
where Ul is the expectation value of the color trace of a straight Wilson line of length l evaluated on
a Landau gauge fixed ensemble, and where the length dependent renormalization has been carried
out with the values δm obtained from the static quark potential. Only at short lengths, l . 0.25fm,
we find significant differences between lattice data from different lattice spacings, a sign of lattice
cutoff effects. For our TMD calculations discussed below we exclude data obtained in this region
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Figure 3: a) Static quark potential from MILC lattices at several lattice spacings a, matched to the string
potential at r ≈ 0.7fm. b) Test of the renormalization procedure with straight Wilson lines on a gauge fixed
ensemble.

from our fits. For l & 0.25fm, we assume that renormalization of the lattice operator can be carried
out as in the continuum, Oren = Z−1

Ψ,z exp(−δm
√
−l2)O, where the renormalization constants Z−1

Ψ,z
and δm are independent of the Dirac structure Γ [18].

Figure 2 b) shows the renormalized lattice data for Ã2(l2,0) as solid data points. The curve and
statistical error band correspond to a Gaussian fit to this data in the range

√
−l2 ≥ 0.25fm. Note

that the renormalization constant Z−1
Ψ,z has been fixed (in the isovector, u−d-channel) such that the

x-k⊥-integrated Gaussian density of unpolarized quarks yields the correct total number of valence
quarks,

∫
d2k⊥ f [1]

1,u−d = 1. Similar fits for the other amplitudes Ã10, and Ã7 enable us to calculate the

“worm-gear” functions g[1]
1T , h⊥[1]

1L , and correspondingly, the dipole deformed x-integrated densities
ρ

(q)[1]
T L and ρ

(q)[1]
LT defined in Eqns. (1.2), (1.3) and shown in Fig. 1 b). While the widths of our

distributions depend strongly on our renormalization condition for δm, average transverse quark
momenta can be expressed in terms of ratios of the Gaussian amplitudes at l2=0:

〈kx〉T L ≡
∫

d2k⊥kx ρ
[1]
T L∫

d2k⊥ρ
[1]
T L

∣∣∣∣∣λ=1,

S⊥=(1,0)

=−mN
Ã7(0,0)

Ã2(0,0)
=

{
67(5)MeV (up)
−30(5)MeV (down)

〈kx〉LT ≡
∫

d2k⊥kx ρ
[1]
LT∫

d2k⊥ρ
[1]
LT

∣∣∣∣∣Λ=1,

s⊥=(1,0)

=−mN
Ã10(0,0)

Ã2(0,0)
=

{
−60(5)MeV (up)

16(5)MeV (down)

(errors statistical only). In these ratios, renormalization factors largely cancel. Reference [23]
reveals a remarkable similarity of our results with a light-cone constituent quark model [24], de-
spite the unphysically large quark masses employed in our lattice calculation: They find 〈kx〉T L =
−〈kx〉LT = 55.8MeV for up-, and 〈kx〉T L =−〈kx〉LT =−27.9MeV for down-quarks.

3. Staple shaped gauge links

TMDs for SIDIS or the Drell-Yan process, in particular T-odd distributions like the Sivers
function f⊥1T in Eq. (1.2), require gauge links out to infinity in a direction v, see Fig. 4 a). To avoid
rapidity divergences, the direction v can be chosen slightly off the light cone, see, e.g., [25, 26].
The amplitudes Ãi and the TMDs then also depend on Lorentz-invariant structures involving v, in
particular on the parameter ζ ≡ (2v·P)2/v2, with respect to which the TMDs follow an evolution
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Figure 4: a) Staple shaped Wilson line. b) Test calculation of a T-odd ratio of amplitudes using staple shaped
links at mπ ≈ 800MeV.

equation [25]. Our lattice operators are restricted to spacelike staple directions, v0 = 0, i.e., our
amplitudes are limited to 0 ≤ −ζ ≤ |2P|2. We can only realize staples of finite extent ηv, but we
can look for a plateau at large η . Remaining challenges regarding the definition of TMDs mainly
relate to the regularization of divergences attributed to the Wilson line and possible soft-factor
modifications of Eq. (1.1) needed to ensure QCD factorization. First lattice studies are planned for
ratios of amplitudes, in which renormalization factors and potential soft factors cancel. Figure 4
b) shows results from a test calculation [2] of a ratio of T-odd over T-even amplitudes Rodd ≡
(Ã12− (mN/|P|)2B̃8)/Ã2, evaluated at l·P = 0, |P| ≈ 0.5GeV, for selected values of l2 and a range
of staple extents η . Note that Ã12 would correspond to the Sivers function f⊥1T for lightlike v, while
the amplitudes B̃i parametrize explicit v-dependence [10]. As expected, the result is an odd function
of ηv·P. Moreover, we see the onset of a plateau at |ηv·P|& 2. This is a promising indication that
lattice estimates could be feasible for, e.g., the transverse momentum shift 〈ky〉TU due to the Sivers
function.

4. Conclusions

We have performed first lattice studies of TMDs using non-local operators with a simplified,
straight gauge link. Resulting average momentum shifts 〈kx〉T L and 〈kx〉LT corroborate model
results. Staple-shaped gauge links can potentially address TMDs specific to SIDIS or the Drell-
Yan process, including T-odd functions responsible for single-spin asymmetries.
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