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Detailed information of the low-energy interaction between the charmonia (ηc and J/ψ) and the
nucleon is indispensable for exploring the formation of charmonium bound to nuclei. In order
to investigate the charmonium-nucleon interactions at low energies, we adopt two essentially
different approaches in lattice QCD simulations. The charmonium-nucleon potential can be cal-
culated from the equal-time Bethe-Salpeter amplitude through the effective Schrödinger equation.
This novel method is based on the same idea originally applied for the nucleon force by Aoki-
Hatsuda-Ishii. Another approach is to utilize extended Lüscher’s formula with partially twisted
boundary conditions, which allows us to calculate the s-wave phase shift at any small value of
the relative momentum even in a finite box. We then extract model independent information
of the scattering length and the effective range from the phase shift through the effective-range
expansion. Our simulations are carried out at a lattice cutoff of 1/a ≈ 2 GeV in a spatial vol-
ume of (3 fm)3 with the non-perturbatively O(a)-improved Wilson fermions for the light quarks
and a relativistic heavy quark action for the charm quark. Although our main results are calcu-
lated in quenched lattice calculations, we also present a preliminary full QCD result by using the
2+1 flavor gauge configurations generated by PACS-CS Collaboration. We have found that the
charmonium-nucleon potential is weakly attractive at short distances and exponentially screened
at large distances. We have also successfully evaluated both the scattering length and effective
range from the charmonium-nucleon scattering phase shift.
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1. Introduction

In past several years, properties of hadronic interactions have been extensively studied in lat-
tice QCD simulations [1] based on Lüscher’s finite size method, which is proposed as a general
method for computing low-energy scattering phases of two particles in finite volume [2]. Here,
we recall the recent great success of the nucleon-nucleon potential from lattice QCD [3]. In this
new attempt, the “potential” between hadrons can be calculated from the equal-time Bethe-Salpeter
(BS) amplitude through an effective Schrödinger equation [4]. A direct measurement of hadron-
hadron potentials is now feasible by using lattice QCD. We also notice that an idea of partially
twisted boundary conditions, which allows us to access any small value of non-zero momentum
even in a finite volume, is quite useful for studying the hadron-hadron interaction at low energies
through Lüscher’s finite size method as originally proposed by Bedaque [5]. In this study, we ex-
ploit both novel approaches to obtain detailed information of the low-energy charmonium-nucleon
interaction, that is essential for exploring the formation of charmonium bound to nuclei.

Heavy quarkonium states such as charmonium (cc̄) states do not share the same quark flavor
with the nucleon (N). This suggests that the heavy quarkonium-nucleon interaction is mainly in-
duced by the genuine QCD effect of multi-gluon exchange [6, 7, 8]. Therefore the cc̄-N system
is ideal to study the effect of multi-gluon exchange between hadrons. As an analog of the van der
Waals force, the simple two-gluon exchange contribution gives a weakly attractive, but long-ranged
interaction [9, 10]. This implies that if such attraction between the charmonium and the nucleon is
sufficiently strong, the charmonia (ηc and J/ψ) may be bound to the nucleon or to the large nuclei
[6, 11]. In 1991, Brodsky et al. had argued that the cc̄-nucleus (A) bound state may be realized
for the mass number A ≥ 3, which Wasson confirmed later by solving the Schrödinger equation
for the charmonium-nuclear system with the folding potential. Both calculations assumed a simple
Yukawa form for the charmonium-nucleon potential as Vcc̄N(r) = −γ exp(−αr)/r where parame-
ters (α = 0.6 GeV, γ = 0.6) are fixed by a phenomenological Pomeron exchange model. However,
the validity of calculations based on a phenomenological or perturbative theory is questionable for
QCD where the strong interaction influences the long distance region.

The cc̄-N scattering at low energy has been studied from first principles of QCD. The s-
wave J/ψ-N scattering length is about 0.1 fm by using QCD sum rules [12] and 0.71± 0.48 fm
(0.70± 0.66 fm for ηc-N) by lattice QCD [13], while it is estimated as large as 0.25 fm from the
gluonic van der Waals interaction [7]. All studies suggest that the cc̄-N interaction is weakly attrac-
tive. This indicates that the formation of charmonium bound to nuclei is enhanced. In this situation,
precise information on the low energy charmonium-nucleon interaction is indispensable for explor-
ing nuclear-bound charmonium states like the ηc-3He or J/ψ-3He bound state in few body calcula-
tions [14]. It should be quite important to give a firm theoretical prediction about the nuclear-bound
charmonium, which is possibly investigated by experiments at J-PARC and FAIR/GSI.

2. Methodology

Let us briefly review two novel approaches employed in this study. First, we follow the recent
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great success of the N-N potential from lattice QCD [3]. The potential between hadrons are calcu-
lated from the equal-time BS amplitude through an effective Schrödinger equation [3]. Second, we
exploit partially twisted boundary conditions to calculate the scattering phase shift at low energies
based on Lüscher’s finite size method.

2.1 Hadron-hadron potential defined through the BS wave function

The method utilized here to calculate the hadron-hadron potential in lattice QCD is based on
the same idea originally applied for the N-N potential [3, 4]. The first step in the derivation of
the hadron-hadron potential is to define the BS wave function. We calculate the equal-time BS
amplitude of two local operators (hadrons h1 and h2) separated by given spatial distances (r = |r|)
from the following four-point correlation function

Gh1-h2(r, t; t2, t1) = ∑
x

∑
x′,y′

〈h1(x, t)h2(x+ r, t)
(
h1(x′, t2)h2(y′, t1)

)†〉, (2.1)

where r is the relative coordinate of two hadrons at sink position (t). Each hadron operator at
source positions (t1 and t2) is separately projected onto a zero-momentum state by a summation
over all spatial coordinates x′ and y′. To avoid the Fierz rearrangement of two-hadron operators, it
is better to set t2 6= t1. Without loss of generality, we choose t2 = t1 + 1 = tsrc hereafter. Suppose
that |t− tsrc| � 1 is satisfied, the correlation function asymptotically behaves as

Gh1-h2(r, t; tsrc) ∝ φh1-h2(r)e
−Eh1-h2 (t−tsrc) (2.2)

where the r-dependent amplitude φh1-h2(r), which is defined by

φh1-h2(r) = ∑
x
〈0|h1(x)h2(x+ r)|h1h2;Eh1-h2〉, (2.3)

with the total energy Eh1-h2 for the ground state of the two-particle h1-h2 state, corresponds to a part
of the equal-time BS amplitude and is called the BS wave function [2, 15]. After an appropriate
projection with respect to discrete rotation

φ
A+

1
h1-h2

(r) =
1

24 ∑
R∈Oh

φh1-h2(R
−1r), (2.4)

where R represents 24 elements of the cubic group Oh, one can get the BS wave function projected
in the A+

1 representation, which corresponds to the s-wave in continuum theory at low energy.
The BS wave function defined in Eqs.(2.3)-(2.4) obeys an effective Schrödinger equation with

non-local potential Uh1-h2 :(
1

2µ
∇

2 +E
)

φ
A+

1
h1-h2

(r) =
∫

Uh1-h2(r,r
′)φ A+

1
h1-h2

(r′)d3r′, (2.5)

where µ and E are a reduced mass and an energy eigenvalue of the two hadron system, respectively.
The non-local potential Uh1-h2 defined in Eq.(2.5) is supposed to be energy independent. As long
as considering the low energy hadron-hadron scattering, where the relative velocity of hadrons is
small, we can take only the leading term in the velocity expansion. At low energy, the non-local
potential in Eq.(2.5) may become localized as Uh1-h2(r,r′) = δ (r− r′)Vh1-h2(r). As a results, the
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hadron-hadron “effective” central potential is defined through the following stationary Schrödinger
equation

Vh1-h2(r) =
1

2µ

∇2φ
A+

1
h1-h2

(r)

φ
A+

1
h1-h2

(r)
+E. (2.6)

Once the BS wave functions φ
A+

1
h1-h2

(r), the reduced mass µ and energy eigenvalue E are calculated
in lattice simulations, we can obtain the hadron-hadron potential from Eq.(2.6). For the differential
operator ∇2, the discrete Laplacian with nearest-neighbor points is used. Although the energy
eigenvalue E is supposed to be the energy difference between the total energy of two hadrons
(Eh1-h2) and the sum of the rest mass of individual hadrons (Mh1 + Mh2), we instead determine E

with the condition of limr→∞{ 1
2µ

∇2φ
A+

1
h1-h2

(r)/φ
A+

1
h1-h2

(r)+E}= 0 [15]. More details of this method
can be found in Ref. [4].

2.2 Lüscher’s finite size method with partially twisted boundary conditions

Let us consider the two-particle system in the center-of-mass frame, where the total energy of
two-particle states is given by

Eh1-h2(p) =
√

M2
h1

+ p2 +
√

M2
h2

+ p2 (2.7)

with the relative momentum p = |p|. We here introduce the scaled relative momentum, q =
Lp/(2π), with the spatial extent L. Even under the periodic boundary condition, q2 is no longer an
integer due to the presence of two-particle interaction. In this sense, p is the interacting momen-
tum. The s-wave phase shift δ0(p) can be calculated through Lüscher’s phase-shift formula with
the interacting momentum measured in the two-particle system:

pcotδ0(p) =
Z00(1,q2)

Lπ
, (2.8)

where the generalized zeta function, Z00(s,q2) = 1√
4π

∑n∈Z3(n2 − q2)−s, is defined through an
analytic continuation in s from the region s > 3/2 to s = 1 [2]. This is a general method for
computing low-energy scattering phases of two particles in a finite box L3. As is well known, the
quantity pcotδ0(p), which appears in the l.h.s. of Eq. (2.8), can be expanded in a power series of
p2 in the vicinity of the threshold as

pcotδ0(p) =
1
a0

+
1
2

r0 p2 +O(p2), (2.9)

which is called the effective-range expansion [16]. It is worth noting that model-independent in-
formation of the low energy interaction should be encoded in a small set of parameters, i.e. the
scattering length a0 and the effective range r0, which are associated with the low energy constants
in the effective field theory [17].

In principle, one can determine these threshold parameters through the detailed study of p2

dependence of the scattering phase shift. However, it should be reminded that accessible values
of the phase shift on the lattice are restricted due to the discrete momenta (approximately, in units
of 2π/L) in finite volume. Indeed, a typical size of the smallest non-zero momentum under the
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periodic boundary condition, e.g. pmin ≈ 2π/L ∼ 420 MeV for L ' 3 fm and 250 MeV for L ' 5
fm, which might be beyond the radius of convergence for the effective-range expansion at least in
the attractive interaction case 1.

A novel idea, twisted boundary condition, was proposed by Bedaque to circumvent the above
mentioned issue [5]. If the following boundary conditions are imposed on quark fields q(x) in a
spatial direction (i = 1,2,3):

q(xi +L) = eiϕiq(x), (2.10)

where ϕi represents a twisted angle, all momenta in the spatial direction i are quantized in a finite
box L3 according to

pi =
2π

L

(
ni +

ϕi

2π

)
, (2.11)

where ni becomes an integer in the free case. The case of ϕi = 0 (π) corresponds to the usual
(anti-)periodic boundary condition. For non-zero twisted angle ϕi 6= 0, the lowest Fourier mode
(ni = 0) still can receive non-zero momentum ϕi/L, which can be set to an arbitrary small value.
The redefinition of quark fields as q′(x) = ei~θ ·~xq(x), where ~θ = (ϕ1

L , ϕ2
L , ϕ3

L ), can suggest how to
implement the twisted boundary condition. The new fields q′(x) now satisfy the usual periodic
boundary conditions as q′(xi + L) = q′(xi). Therefore, the hopping terms in the lattice fermion
action are transformed [5] as

∑
i=1,2,3

q̄′(x)
[
eiaθiUi(x)(1− γi)q′(x+ î)+ e−iaθiU†

i (x− î)(1+ γi)q′(x− î)
]
. (2.12)

This indicates that the quark propagator under the twisted boundary condition can be calculated
with the simple replacement of the link variables {Ui(x)} by {eiaθiUi(x)} in the hopping terms [5,
19]. The validity of this novel trick has been tested in the dispersion relation of single hadron
states [19, 18]. It is also widely used for various purposes [20, 21, 22].

In this study, we apply twisted boundary conditions to two-hadron system in order to study
properties of two-hadron scattering at low energies through Lüscher’s finite size method as pro-
posed in the original paper [5]. It is should be reminded that the Lüscher’s phase-shift formula
receives a slight modification under twisted boundary conditions. The generalized zeta function
Z00(s,q2) appeared in Eq. (2.8) should be replaced by the following function:

Z d
00(s,q

2) = ∑
n∈Z3

1
((n+d)2−q2)s (2.13)

with d =
(

ϕ1
2π

, ϕ2
2π

, ϕ3
2π

)
[5]. Although large L expansion formula is derived in Ref [5] as the asymp-

totic solution of the new phase-shift formula around the first pole of q2 = d2, we instead use the
extended Lüscher’s phase-shift formula directly. For numerical evaluation of Z d

00(1,q2), we use a
rapid convergent integral expression found in Appendix A of Ref. [23]. Within this approach, it
is not necessary to calculate the higher Fourier modes of two-particle scattering state in order to
examine the momentum dependence of the scattering phase shift near the threshold. It is known
that different momentum modes in two-particle states do mix since the relative momentum is not
conserved due to scattering [24]. In this sense, there is another advantage of this approach.

1For the N-N scattering case, the convergence radius of is known to be smaller than Mπ/2.
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Table 1: Simulation parameters employed in this study.

n f β (κud
sea, κs

sea) a−1 [GeV] L3×T La [fm] Stat. Mπ [GeV]
0 6.0 — 2.12 323×48 2.98 602 0.64-0.87

2+1 1.9 (0.13754, 0.13640) 2.18 323×64 2.90 450 0.41

3. Numerical results

We have performed lattice QCD simulations in both quenched and full QCD. In quenched
QCD, we use a lattice size of L3 × T = 323 × 48 with the single plaquette gauge action at β =
6/g2 = 6.0, which corresponds to a lattice cutoff of a−1 ≈ 2.1 GeV according to the Sommer
scale [25, 26]. We use the non-perturbatively O(a) improved Wilson fermions for the light quarks
(q) [27] and a relativistic heavy quark (RHQ) action for the charm quark (Q) [28]. The RHQ action
is a variant of the Fermilab approach [29], which can remove large discretization errors for heavy
quarks. The hopping parameter is chosen to be κq = 0.1342, 0.1339, 0.1333, which correspond to
Mπ = 0.64, 0.72, 0.87 GeV (MN = 1.43, 1.52, 1.70 GeV), and κQ = 0.1019 which is reserved for
the charm-quark mass (Mηc = 2.92 GeV and MJ/ψ = 3.00 GeV) [30].

Full QCD simulations are also carried out by using 2+1 flavor gauge configurations generated
by PACS-CS Collaboration on lattices of size 323× 64 with the Iwasaki gauge action at β = 1.9,
which corresponds to a comparable lattice cutoff of a−1 ≈ 2.2 GeV, and the non-perturbatively
O(a) improved Wilson fermions with cSW = 1.715 [31]. Although we will present preliminary full
QCD results for the ηc-N potential calculated at the third lightest quark mass (κq = κud

sea = 0.13754)
of the PACS-CS configurations [31], which corresponds to Mπ = 0.41 GeV (MN = 1.20 GeV), with
κQ = 0.10679 for the charm quark (Mηc = 2.99 GeV and MJ/ψ = 3.10 GeV), our main results are
obtained from quenched lattice QCD. The simulation parameters and the number of sampled gauge
configurations are summarized in Table 1.

We use the conventional interpolating operators, h1(x) = εabc(ua(x)Cγ5db(x))uc(x) for the nu-
cleon, and h2(y) = c̄a(y)γ5ca(y) for the ηc state or h2(y) = c̄a(y)γica(y) for the J/ψ state, where
a, b and c are color indices, and C = γ4γ2 is the charge conjugation matrix. Each hadron mass
is obtained by fitting the corresponding two-point correlation function with a single exponential
form. We calculate quark propagators with wall sources, which are located at tsrc = 5 for the light
quarks and at tsrc = 4 for the charm quark, with Coulomb gauge fixing. It is worth mentioning that
Dirichlet boundary conditions are imposed for quarks in the time direction in order to avoid wrap-
round effects which are very cumbersome in systems of more than two hadrons [32]. In addition,
the ground state dominance in four-point functions is checked by an effective mass plot of total
energies of the cc̄-N system.

3.1 BS wave function and effective central potential

In this subsection, we mainly show results of the ηc-N interaction, which does not possess a
spin-dependent part (see Ref. [33] for results of the J/ψ-N system). The left panel of Fig. 1 shows
a typical result of the projected BS wave function at the smallest quark mass in quenched lattice
QCD, which is evaluated by a weighted average of data in the time-slice range of 16≤ t− tsrc ≤ 35.

6



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
1
5
6

Charmonium-nucleon interaction ... T. Kawanai and S. Sasaki

0.95

1.00

1.05

1.10

1.15

1.20

1.25

 0  0.5  1  1.5  2  2.5

W
av

e 
fu

nc
tio

n 
(r)

r [fm]

-60

-50

-40

-30

-20

-10

 0

 10

 0  0.5  1  1.5  2  2.5

V(
r) 

[M
eV

]

r [fm]

lattice data
Yukawa fit

Model potential

Figure 1: The BS wave function (left) and the effective central potential (right) in the s-wave ηc-N system
for Mπ = 0.64 GeV as a typical example. In the right panel we fit a Yukawa potential (solid line) and
compare with the phenomenological potential (dashed) adopted in Ref. [6].

The wave functions are normalized to unity at a reference point r = (16,16,16), which is supposed
to be outside of the interaction region. As shown in Fig. 1, the wave function is enhanced from
unity near the origin so that the low-energy ηc-N interaction is certainly attractive. This attractive
interaction, however, is not strong enough to form a bound state as is evident from this figure,
where the wave function is not localized, but extends to large distances.

In the right panel of Fig. 1, we show the effective central ηc-N potential, which is evaluated
by the wave function through Eq. (2.6) with measured values of E and µ . As is expected, the ηc-N
potential clearly exhibits an entirely attractive interaction between the charmonium and the nucleon
without any repulsion at either short or large distances. The short range attraction is deemed to be
a result of the absence of Pauli blocking, that is a relevant feature in this particular system of
the heavy quarkonium and the light hadron. The interaction is exponentially screened in the long
distance region r & 1 fm. This is consistent with the expected behavior of the color van der Waals
force in QCD, where the strong confining nature of color electric fields must emerge [10, 34]. The
exponential-type damping in the color van der Waals force is hardly introduced by any perturbative
arguments.

In detail, a long-range screening of the color van der Waals force is confirmed by the following
analysis. We have tried to fit data with two types of fitting functions: i) exponential type functions
−exp(−rm)/rn, which include the Yukawa form (m = 1 and n = 1), and ii) inverse power law
functions −1/rn, where n and m are not restricted to be integers. The former case can easily
accommodate a good fit with a small χ2/ndf value, while in the latter case we cannot get any
reasonable fit. For example, the functional forms −exp(−r)/r and −1/r7 give χ2/ndf ' 2.5 and
34.3 , respectively. It is clear that the long range force induced by a normal “van der Waals” type
interaction based on two-gluon exchange [10] is non-perturbatively screened.

If we adopt the Yukawa form −γe−αr/r to fit our data of Vcc̄-N(r), we obtain γ ∼ 0.1 and
α ∼ 0.6 GeV. These values should be compared with the phenomenological cc̄-N potential adopted
in Refs. [6], where the parameters (γ = 0.6, α = 0.6 GeV) are barely fixed by a Pomeron exchange
model. The strength of the Yukawa potential γ is six times smaller than the phenomenological

7
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Figure 2: The quark-mass dependence of the ηc-N potential (left) and a comparison between quenched and
dynamical simulations (right)

value, while the Yukawa screening parameter α obtained from our data is comparable. The cc̄-N
potential derived from lattice QCD is rather weak.

We next show the quark-mass dependence of the ηc-N potential. As shown in the left panel
of Fig. 2, large quark-mass dependence is not observed. This is a non-trivial feature since there
is an explicit dependence on the reduced mass µ in the definition of the effective central potential
Eq.(2.6). However, if one recalls that the cc̄-N interaction is mainly governed by multi-gluon ex-
change, the resulting potential is expected to be less sensitive to the reduced mass of the considered
system ignoring the internal structures of the ηc and nucleon states.

In order to make a reliable prediction about the nuclear-bound charmonium, an important step
is clearly an extension to dynamical lattice QCD simulations in the lighter quark mass region.
Our preliminary result of the ηc-N potential at Mπ = 0.41 GeV from 2+1 flavor dynamical QCD
simulation is shown in the right panel of Fig. 2 where the ηc-N potential calculated at M = 0.61
GeV in quenched lattice QCD is also included for comparison. There is neither qualitative or
quantitative differences between the quenched QCD result and the 2+1 flavor QCD result within
statistical errors. This indicates that the ηc-N potential is not strongly affected by dynamical quarks
at least up to Mπ = 0.41 GeV.

It is worth remembering that the ordinary van der Waals interaction is sensitive to the size of
the charge distribution, which is associated with the dipole size. Larger dipole size yields stronger
interaction. We may expect that the size of the nucleon becomes large as the light quark mass
decreases. However, the very mild quark-mass dependence and no appreciable dynamical quark
effect observed here do not accommodate this expectation properly.

Recent detailed studies of nucleon form factors tell us that the root mean-square (rms) radius
of the nucleon, which is a typical size of the nucleon, shows rather mild quark-mass dependence
and its value is much smaller than the experimental value up to Mπ ∼ 0.3 GeV (for example,
see [35]). At the chiral limit in baryon chiral perturbation theory the rms radius is expected to
diverge logarithmically [36]. This implies that the size of the nucleon increases drastically in the
vicinity of the physical point. It may be phenomenologically regarded as the “pion-cloud” effect.

To confirm the possible effect of the nucleon size on the cc̄-N potential as described previously,
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Figure 3: The square of measured energies of the ηc state (left) and the nucleon (right) as a function of three
momentum squared in lattice unit. The dotted lines represents the relativistic and continuum-type dispersion
relation.

we may need to perform simulations in much lighter quark mass region (Mπ < 0.3 GeV). We
speculate that the cc̄-N potential would become more attractive in the vicinity of the physical point
where the “pion-cloud” effect emerges. Such planning is now underway [37].

3.2 Scattering under partially twisted boundary conditions

In this subsection, we present quenched QCD results of low-energy charmonium-nucleon scat-
tering with partially twisted boundary conditions. The simulation set up is the same as what we
use to calculate the ηc-N potential in quenched QCD. In this study, we introduce twisted boundary
conditions only in a single direction, z-direction, where the D4 point group symmetry still remains
as a remnant of the rotation symmetry. Three non-zero twisted angles are chosen to be ϕ3 = α,2α

and 3α with α = 0.03×L ≈ 3π/10.
We first examine the dispersion relation of the charmonia (ηc and J/ψ) and the nucleon in

order to demonstrate that finite momenta can be properly induced for the lowest Fourier mode
(|n|= 0) by the twisted angles. For comparing with results obtained from the higher Fourier modes
(|n| 6= 0) in the periodic boundary condition, we additionally calculate quark propagators with
the gauge-invariant Gaussian smearing source [38]. We then compute two-point functions of the
hadrons, where the sink hadron operators are projected onto the three lowest momenta, (0,0,0),
(1,0,0) and (1,1,0) in units of 2π/L in the periodic boundary condition (see details in Ref. [39]).

As shown in Fig. 3, we observe that measured energies of the ηc and the nucleon under
partially twisted boundary conditions increases as twisted angles increase. Here, the momentum
squared p2 can be evaluated by (ϕ3/L)2. Data points of energies calculated by the standard tech-
nique of the momentum projection using the Fourier transformation are also included for com-
parison. All data points are consistent with the relativistic and continuum-type dispersion relation
E2

h = M2
h + p2. We recall that the dispersion relation is a key ingredient in determination of the

relative momentum of two-particle states, which is required for Lüscher’s finite size method.
To determine the relative momentum of the charmonium-nucleon system, we consider the

interaction energy E, which is defined by an energy difference between the total energy of two-
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Figure 4: The value of pcotδ0(p) as a function of the interaction momentum squared p2 at Mπ = 0.64 GeV.

hadrons and the sum of the rest mass of individual hadrons:

E = Ecc̄-N − (Mcc̄ +MN). (3.1)

This energy value can be evaluated by the large-t behavior of a ratio of the four-point correlation
function Gcc̄-N(t) = ∑r Gcc̄-N(r, t; tsrc) and two-point correlation functions of individual hadrons

Rcc̄-N(t) =
Gcc̄-N(t)

Gcc̄(t)GN(t)
−−−→
t�tsrc

exp(−E(t− tsrc)) (3.2)

where Gcc̄(t) and GN(t) represent two-point correlation functions of the charmonium and nucleon,
respectively. The interacting momentum p, which is defined in Eq. (2.7), can be evaluated by this
measured interaction energy E with the rest masses of individual hadrons, Mcc̄ and MN . Therefore,
if the four-point function Gcc̄-N(t) is calculated under the twisted boundary conditions, we can get
various interacting momenta p near the threshold and also evaluate their corresponding scattering
phase shifts through the extended Lüscher’s phase shift formula, which is described in Sec. 2.2.

Fig. 4 shows the value of pcotδ0(p) calculated at the lightest quark mass (Mπ = 0.64 GeV)
as a function of the interaction momentum squared p2. Full diamond, circle and square symbols
represent the ηc-N, spin-1/2 J/ψ-N and spin-3/2 J/ψ-N channels, respectively 2. All channels
exhibit very mild momentum dependence near the threshold. Analyticity of pcotδ0(p) in the
vicinity of the threshold allows us to consider the fit ansätz as a simple polynomial function of the
interacting momentum squared p2:

pcotδ0(p) = d0 +d1 p2 +d2 p4. (3.3)

Needless to say, it is nothing but the effective-range expansion. A linear fit with respect to p2 for the
three lowest p2 points is enough to evaluate the first two fitting parameters, namely the scattering
length a0 = 1/d0 and the effective range r0 = 2d1. We also apply a quadratic fit for all four data

2In the case of the s-wave J/ψ-N scattering, there are different spin states, spin-1/2 and 3/2 states. Therefore, the
appropriate spin projections are required to disentangle each spin contribution from the four-point correlation functions.
Details of the spin projection may be found in Appendix of Ref. [13].

10



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
1
5
6

Charmonium-nucleon interaction ... T. Kawanai and S. Sasaki

0 0.2 0.4 0.6 0.8 1

Mπ
2
 [GeV

2
]

0

0.1

0.2

0.3

0.4

0.5

Sc
at

te
ri

ng
 le

ng
th

 a
0  [

fm
]

η
c
-N

J/ψ-N (J=1/2)
J/ψ-N (J=3/2)

0 0.2 0.4 0.6 0.8 1

Mπ
2
 [GeV

2
]

0

0.5

1

1.5

2

E
ff

ec
tiv

e 
ra

ng
e 

r 0  [
fm

]

η
c
-N

J/ψ-N (J=1/2)
J/ψ-N (J=3/2)

Figure 5: The scattering length a0 (left) and effective range r0 (right) as a function of M2
π . The squared

(diamond) symbols have been moved slightly in the plus (minus) x-direction.

points. The scattering parameters obtained from both determinations agree with each other within
their errors. We simply choose the values obtained from the linear fit as our final results.

In Fig. 5, we plot our evaluated scattering lengths (left panel) and effective ranges (right panel)
for all three channels as a function of pion mass squared. In both scattering parameters, it is found
that there is no significant quark mass dependence. These observations are consistent with what
we observed in the charmonium-nucleon potentials. Although the channel dependence of the cc̄-N
scattering length was less clear in previous studies [13, 40], we find (aJ/ψ-N

0 )SAV ∼ 0.35 fm >

aηc-N
0 ∼ 0.25 fm 3 in this study. On the other hand, both ηc-N and J/ψ-N channels yield the similar

value of r0 ∼ 1.0 fm albeit with large errors. The former feature may indicate that the J/ψ-N
system is slightly more attractive than the ηc-N system at low energy. This is consistent with the
similar spin dependence observed in the difference of the ηc-N and J/ψ-N potentials [33].

4. Summary

We have studied low energy charmonium-nucleon interaction in both quenched and full QCD
simulations. We first calculate potentials between the ηc state and the nucleon from the equal-time
BS amplitude through the effective Schrödinger equation. We have found that the central potential
Vcc̄-N(r) in the ηc-N system is weakly attractive at short distances and exponentially screened at
large distances. It is observed that the potential have no significantly large quark-mass dependence
within pion mass region 640 MeV ≤ Mπ ≤ 870 MeV in quenched simulations. Our preliminary
full QCD results show a good agreement with the quenched results. At least up to Mπ=410 MeV,
we observe no appreciable dynamical quark effect on the charmonium-nucleon potential. We have
also employed an alternative approach for studying the charmonium-nucleon interaction. The s-
wave phase shifts at low energies are calculated through the extended Lüscher’s finite size method
with twisted boundary conditions. We have successfully evaluated both the scattering length and
effective range from the charmonium-nucleon scattering phase shift in the vicinity of the threshold,
where the effective range expansion is applicable. We have found (aJ/ψ-N

0 )SAV ∼ 0.35 fm > aηc-N
0 ∼

3Here SAV stands for the spin-averaged value 1
3 [(a0)1/2 +2(a0)3/2] for the J/ψ-N channel.
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0.25 fm, while all ηc-N and J/ψ-N channels yield the similar value of r0 ∼ 1.0 fm albeit with large
errors. The channel dependence observed in the cc̄-N scattering length may indicate that the J/ψ-N
system is slightly more attractive than the ηc-N system at low energy. This is fairly consistent with
what we reported in Ref. [33], where the difference between the ηc-N and J/ψ-N potentials are
discussed.
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