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significantly reducing errors in the extrapolation to the physical point.
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1. Introduction

Distribution amplitudes (DAs) provide access to hadron wave functions andcan be related to
form factor data through perturbative QCD and light cone sum rules. This makes DAs interesting
quantities to be investigated within the framework of lattice QCD. Distribution amplitudes for the
nucleon and its parity-partner, theN∗(1535), have been calculated by the QCDSF collaboration in
[1, 2] on lattices withNf = 2 degenerate Clover fermions and pion masses of 400 to 1400 MeV. In
this update, we present new data obtained for a 323×64-lattice withβ = 5.29, κ = 0.13632 and
270 MeV pions. This new data is significantly closer to the physical point thanbefore and will help
us in reducing the uncertainties in the extrapolation to the physical point.

The nucleon distribution amplitudes are defined as follows [3]. In the infinite momentum
frame, with transverse momentum components integrated out and only leading twist components
considered, the nucleon wave function for the three-quark Fock state can be written as

|N,↑〉 = fN

∫

[dx]ϕ(xi)

2
√

24x1x2x3
{|u↑(x1)u

↓(x2)d
↑(x3)〉− |u↑(x1)d

↓(x2)u
↑(x3)〉} (1.1)

wherexi are the longitudinal momentum fractions, the arrows indicate the nucleon and quark spins,
∫

[dx] =
∫ 1

0 dx1dx2dx3δ (1−x1−x2−x3), fN is the leading-twist normalization constant andϕ(xi)

is the nucleon distribution amplitude. We also calculate the normalization constants for the next-
to-leading twist wave functions,λ1 andλ2; see Refs. [1, 2] for the definition.

2. Lattice procedure

On the lattice, only moments of the distribution amplitude,

ϕ lmn =
∫

[dx]xl
1xm

2 xn
3ϕ(x1,x2,x3)

can be accessed. And even this is limited to the first and second moments, sincefor higher mo-
ments, mixing with lower dimensional operators occurs, which would make the calculation in-
creasingly difficult. Moreover, for higher moments, the matrix elements have tobe evaluated at
higher momenta which leads to noisier data. As can be seen in the following, even for the second
moments we have barely enough statistics to get reasonably small error bars, and third moments
would be much worse than that.

It is useful to expand the wave function in multiplicatively renormalizable terms [4]:

ϕ(xi ; µ2) = 120x1x2x3

{

1+c10(x1−2x2 +x3)L
8

3β0 +c11(x1−x3)L
20

9β0

+c20
[

1+7(x2−2x1x3−2x2
2)

]

L
14

3β0 +c21(1−4x2)(x1−x3)L
40

9β0

+c22
[

3−9x2 +8x2
2−12x1x3

]

L
32

9β0 + . . .
}

whereL ≡ αs(µ)/αs(µ0) andci j are the so-called “shape parameters”. Theci j are given by lin-
ear combinations of the moments of the distribution amplitudeϕ lmn with l + m+ n ≤ i. Unlike
the moments, which are constrained by the momentum conservation conditionϕ lmn = ϕ(l+1)mn+

ϕ l(m+1)n + ϕ lm(n+1), theci j are independent nonperturbative parameters. In practice, they are ob-
tained from the data onϕ lmn using constrained fits.
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(a) This effective mass plot shows a nice plateau for the
nucleon (left, red line) and a reasonable plateau for the
N∗(1535) (right, green line).
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(b) The dispersion relation (dashed line:E2 = m2 + p2) is
fulfilled within the error bars. Shown here is data from six
lattice ensembles with pion masses ranging from 270 MeV
to 648 MeV.

Figure 1: Effective mass plot (a) and dispersion relation (b). Only statistical errors are shown.

The moments of the distribution amplitudes are calculated through matrix elements of the form

〈O(x)αβγ ¯N (y)τ〉

whereN is a smeared nucleon interpolator andO is a local three-quark operator with up to two
derivatives. The operatorsO that are used to calculate the DAs have been classified according to
irreducible representations of the lattice symmetry group in order to avoid mixingof operators [5]
and they have been non-perturbatively renormalized [6].

Separation of the parity-plus (nucleon) and parity-minus (N∗(1535)) states has been achieved
by using the generalized Lee-Leinweber parity projector (the non-generalized version of which
was introduced in [7]),12Γ

(

1+ m
E γ4

)

, whereΓ is a suitable product ofγi matrices andm andE are
the mass and energy, respectively, of the baryon. Please note that this projector might have to be
modified for certain operators and momenta, but it is perfectly suited for the operator-momentum
combinations that are used here. In Fig. 1a one can see that a reasonable mass splitting is achieved
between the nucleon andN∗(1535) at momentump2 = 0. At higher momenta, the data becomes
noisier, but it is still possible to find plateaus for both the nucleon andN∗(1535). As a consistency
check, the dispersion relation has been looked at and it is fulfilled within error bars (see Fig. 1b).

3. Results

3.1 Normalization Constants

The results for the normalization constantsfN, fN∗ andλ1,2 are shown in Fig. 2. In comparison
to the plots of the nucleon normalization constants shown in [1], adding the newdata point at 270
MeV pion mass makes a large difference, reducing the distance for the chiral extrapolation by
more than a factor of two. Thus we can avoid using data with pion masses> 1 GeV which strongly
influenced our previous results [1].
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Figure 2: Dependence offN and fN∗ (left) andλ1 andλ2 (right) on the pion mass. Only statistical
errors are shown.

It is interesting to note that on the lattice with 270 MeV pion mass, it is the first time to
see a significant difference between the leading-twist normalization constants of the nucleon and
N∗(1535). While fN and fN∗ agree – within error bars – on the lattices with heavier pions, this is
no longer true for the new data point. However, we do not yet have an explanation why this is the
case or whether it should have been expected.

3.2 Shape parameters

The shape parameters are calculated from the moments of the DAs as described above. Since
the shape parameters describe the deviation from a symmetric momentum distribution, their relativ
error is larger than the error of the moments of the DAs. Also, as can clearlybe seen in Fig. 3,
the second order shape parametersc2 j are noisier than the first order ones,c1 j . This can be mostly
attributed to the fact that the calculation of thec2 j involves matrix elements atp2 = 2, while one
needs only the cleanerp2 = 1 matrix elements to calculate thec1 j . Also, the nucleon error bars are
smaller than theN∗(1535)’s, which is not surprising given that theN∗(1535) has a larger mass and
thus a shorter plateau than the nucleon.

The first order shape parameters show a significant difference between the nucleon and its
parity partner. This difference is also visualized in the barycentric plot, Fig. 4: TheN∗(1535)
wavefunction is much more strongly peaked towards the momentum-carrying quark (quark label
“1” in Eq. 1.1) than the nucleon.

The second order shape parameters still have very large error bars and are thus not included
in the barycentric plot. However, we hope that increased statistics will reduce these error bars to a
reasonable size. Whilec20 is compatible with 0 both for the nucleon and its parity partner,c21 and
c22 tend to be negative in both cases.

4. Conclusions and Outlook

Nucleon andN∗(1535) distribution amplitudes and the wavefunction normalization constants
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Figure 3: Shape parameters for the nucleon andN∗(1535) on the 323×64 lattice at 270 MeV pion
mass. Only statistical errors are shown. While the error bars for the firstmoments are fine, more
statistics will improve the errors bars for the second moments.
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Figure 4: Barycentric plot of the nucleon (left) andN∗(1535) (right) distribution amplitudes, cal-
culated for the central values of the shape parameters. Due to the large error bars on the second
moments, only the first moments have been used for this plot.

fN, fN∗ andλ1,2 have been calculated at pion masses as low as 270 MeV. Unlike for higher pion
mass lattices, a difference between the nucleon andN∗(1535) wavefunction normalization con-
stants can now be seen. The distribution amplitudes for the nucleon and its parity partner are also
significantly different, with theN∗(1535)’s wavefunction being more peaked towards the spin-
carrying quark than the nucleon’s wavefunction.

To improve the accuracy of the results on the nucleon andN∗(1535) DAs, more statistics are
being collected for the 323×64 lattice with 270 MeV pions. Also, calculations at the same pion
mass but a larger lattice volume will be performed to get a handle on finite volume effects. Finally,
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the data will have to be extrapolated to the physical point.
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