
P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
1
6
5

Hyperon Form Factors from N f = 2+1 QCD

M. Göckelera, Ph. Häglera, R. Horsleyb, Y. Nakamuraa,c, D. Pleiterd , P. E. L. Rakowe,
A. Schäfera, G. Schierholzd , H. Stüben f , F. Wintera, J. M. Zanotti∗,b

a Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany
b School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, UK
c Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan†

d Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen, Germany
e Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool,
Liverpool L69 3BX, UK

f Konrad-Zuse-Zentrum für Informationstechnik Berlin, 14195 Berlin, Germany
E-mail: jzanotti@ph.ed.ac.uk

QCDSF/UKQCD Collaboration

We present results from the QCDSF/UKQCD collaboration for the electromagnetic and semi-
leptonic form factors for the hyperons. The simulations are performed on our new ensembles
generated with 2+1 flavours of dynamical O(a)-improved Wilson fermions. A unique feature of
these configurations is that the quark masses are tuned so that the singlet quark mass is held fixed
at its physical value. We use 5 such choices of the individual quark masses on 243 × 48 lattices
with a lattice spacing of about 0.078 fm.

The XXVIII International Symposium on Lattice Field Theory, Lattice2010
June 14-19, 2010
Villasimius, Italy

∗Speaker.
†present address

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:jzanotti@ph.ed.ac.uk


P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
1
6
5

Hyperon Form Factors J. M. Zanotti

1. Introduction

The study of the electromagnetic (EM) properties of hadrons provides important insights into
the non-perturbative structure of QCD. The EM form factors reveal information on the internal
structure of hadrons including their size, charge distribution and magnetisation.

While the EM form factors of the nucleon have received a lot of recent attention in lattice
simulations (see, e.g., [1] for a review), the investigation of the hyperon EM form factors has so
far received only limited attention [2, 3]. These, however, are of significant interest as they provide
valuable insights into the environmental sensitivity of the distribution of quarks inside a hadron.
For example, how does the distribution of u quarks in Σ+ change as we change the mass of the
(spectator) s quark?

Semileptonic form factors of the hyperons provide an alternative method to the standard K`3

decays (see e.g. [4]) for determining the CKM matrix element, |Vus|. This is done by using the
experimental value for the decay rate of the hyperon beta decays, B → b`ν

Γ =
G2

F

60π3 (MB−Mb)5(1−3δ )|Vus|2| f1(0)|2
(

1+3
∣∣∣∣g1(0)

f1(0)

∣∣∣∣2

+ · · ·
)

, (1.1)

where GF is the Fermi constant, δ = (MB −Mb)/(MB + Mb) describes the size of SU(3)flavour

breaking and the ellipsis denotes terms which are O(δ 2) and can be safely ignored [5]. Hence for
a determination of |Vus|, we need to know the form factors, f1(q2) and g1(q2), at zero momentum
transfer (q2 = 0). These can be determined on the lattice and are the subject of the second part of
this talk. Earlier quenched and N f = 2 results for Σ−→ n`ν and Ξ0 → Σ+`ν can be found in [6, 7].

In this talk we present preliminary results from the QCDSF/UKQCD Collaboration for the
octet hyperon electromagnetic and semi-leptonic decay form factors determined from N f = 2 + 1
lattice QCD.

2. Simulation Details

Our gauge field configurations have been generated with N f = 2 + 1 flavours of dynami-
cal fermions, using the tree-level Symanzik improved gluon action and nonperturbatively O(a)
improved Wilson fermions [8]. We choose our quark masses by first finding the SU(3)flavour-
symmetric point where flavour singlet quantities take on their physical values and vary the individ-
ual quark masses while keeping the singlet quark mass mq = (mu + md + ms)/3 = (2ml + ms)/3
constant [9]. Simulations are performed on lattice volumes of 243 × 48 with lattice spacing,
a = 0.078(3). A summary of the parameter space spanned by our dynamical configurations can
be found in Table 1. More details regarding the tuning of our simulation parameters are given in
Ref. [9].

3. Electromagnetic Form Factors

On the lattice, we determine the form factors F1(q2) and F2(q2) by calculating the following
matrix element of the electromagnetic current

〈B(p′, s′)| jµ(q)|B(p, s)〉 = ū(p′, s′)
[

γµF1(q2)+σµν

qν

2MB
F2(q2)

]
u(p, s) , (3.1)
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Ensemble κl κs mπ [MeV] mK [MeV] mN [GeV] mΣ [GeV] mΞ [GeV]
1 0.12083 0.12104 481 420 1.257 1.209 1.180
2 0.12090 0.12090 443 443 1.231 1.231 1.231
3 0.12095 0.12080 414 459 1.205 1.240 1.258
4 0.12100 0.12070 377 473 1.175 1.242 1.278
5 0.12104 0.12062 350 485 1.123 1.222 1.280

Table 1: Pion, Kaon and octet baryon masses on 243 ×48 lattices with lattice spacing, a = 0.078(3) fm

where u(p, s) is a Dirac spinor with momentum, p, and spin polarisation, s, q = p′− p is the
momentum transfer, MB is the mass of the baryon, B, and jµ is the electromagnetic current. The
Dirac (F1) and Pauli (F2) form factors of the proton are obtained by using j(p)

µ = 2
3 ūγµu− 1

3 d̄γµd,
while the form factors for the Σ and Ξ baryons are obtained through the appropriate substitution,
u → s or d → s. It is common to rewrite the form factors F1 and F2 in terms of the electric and
magnetic Sachs form factors, Ge = F1 +q2/(2MN)2 F2 and Gm = F1 +F2.

If one is using a conserved current, then (e.g. for the proton) F(p)
1 (0) = G(p)

e (0) = 1 gives the
electric charge, while G(p)

m (0) = µ(p) = 1+κ(p) gives the magnetic moment, where F(p)
2 (0) = κ(p)

is the anomalous magnetic moment. From Eq. (3.1) we see that F2 always appears with a factor
of q, so it is not possible to extract a value for F2 at q2 = 0 directly from our lattice simulations.
Hence we are required to extrapolate the results we obtain at finite q2 to q2 = 0. Form factor radii,

ri =
√
〈r2

i 〉, are defined from the slope of the form factor at q2 = 0.

In this talk, we are primarily interested in searching for any SU(3)-flavour breaking effects in
the octet hyperon form factors. In order to highlight these effects, we will consider ratios of the
individual quark contributions to the hyperon radii. For example, the ratio 〈r2

1〉uΣ
/〈r2

1〉up will tell
us about the distribution of the doubly represented (u-)quark in a baryon as we change the doubly-
singly represented quark mass splitting (in effect, changing the mass of the spectator quark).

In Fig. 1 we see results for the ratio of the doubly-represented quark’s contribution to the Dirac
radius of the hyperons plotted as a function of m2

π . Here we clearly see that the Dirac radii, 〈r2
1〉, of

both u(d)-quark in the Σ+(−) and the s-quark in the Ξ0/− become smaller than that of the u-quark
in the proton as we move away from the SU(3)flavour symmetric point by decreasing (increasing)
the light (strange) quark mass. This is particularly interesting in the case of uΣ, since here the only
difference between uΣ and up is the mass of the spectator quark (d(u) in the proton (neutron), s in
the Σ), so the fact that the ratio is < 1 is a purely environmental effect.

In Fig. 2 we see a similar picture for the distribution of the singly represented quarks with the
d(u)-quark in the proton (neutron) having a larger Dirac radius than the u(d)-quark in the Ξ0(−)

and the s-quark in the Σ having the smallest Dirac radius.

These effects are similar to those seen in an earlier quenched QCD simulation [2], however
here the effects are slightly enhanced due to the fact that the strength of the meson loops is sup-
pressed in quenched QCD [10].

Similar results are found for 〈r2
2〉, albeit with larger statistical errors due to the fact that the

results need to be extrapolated from q2 6= 0.
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Figure 1: Results for the ratio of the doubly-
represented quark’s contribution to the Dirac ra-
dius of the hyperons, 〈r2

1〉qB/〈r2
1〉up .
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Figure 2: Results for the ratio of the singly-
represented quark’s contribution to the Dirac ra-
dius of the hyperons, 〈r2

1〉qB/〈r2
1〉dp .

4. Hyperon Semi-Leptonic Form Factors

The matrix element for SU(3)-octet baryon semileptonic decays, B→ b`ν , in Euclidean space
is given by

〈b(p′,s′)|Vµ(x)+Aµ(x)|B(p,s)〉= ub(p′,s′)(OV
µ (q)+OA

µ (q))uB(p,s) , (4.1)

where the vector and axial-vector transitions are each governed by three form factors, namely the
vector ( f1), weak magnetism ( f2), induced scalar ( f3), axial-vector (g1), weak electricity (g2) and
induced pseudoscalar (g3)

OV
µ (q) = f1(q2)γµ + f2(q2)σµν

qν

Mb +MB
+ f3(q2)i

qµ

Mb +MB
, (4.2)

OA
µ (q) = g1(q2)γµγ5 +g2(q2)σµν

qν

Mb +MB
γ5 +g3(q2)i

qµ

Mb +MB
γ5 . (4.3)

The vector and axial-vector currents in Eq. (4.1) are defined as Vµ(x) = ū(x)γµd(x) and Aµ(x) =
ū(x)γµγ5d(x) for ∆S = 0 decays, and Vµ(x) = ū(x)γµs(x) and Aµ(x) = ū(x)γµγ5s(x) for ∆S = 1
decays.

For a lattice calculation of hyperon beta decays, it is useful to define the scalar form factor

f0(q2) = f1(q2)+
q2

M2
B +M2

b
f3(q2) , (4.4)

which can be obtained from the divergence of the vector current, 〈b(p′,s′)|∂µVµ |B(p,s)〉 = (Mb −
MB) f0(q2)ū(p′,s′)u(p,s), and the linear combination

g̃1(q2) = g1(q2)− MB−Mb

MB +Mb
g2(q2) . (4.5)

The scalar form factor (4.4) can be obtained on the lattice at q2
max = (MB −Mb)2 with high

precision from the ratio [11]

R(t ′, t) =
GBb

4 (t ′, t;~0,~0)GbB
4 (t ′, t;~0,~0)

GBB
4 (t ′, t;~0,~0)Gbb

4 (t ′, t;~0,~0)
−−−−−−→
t,(t ′−t)→∞

| f0(q2
max)|2 , (4.6)
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Figure 3: Ratio for f0(q2
max), R(t ′, t), as defined in

Eq. (4.6) for ensemble 4 for the Σ− → n`ν decay.
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Figure 4: f0(q2
max) for Σ− → n`ν , as a function of

the Σ-n mass difference.

where, e.g., GBb
4 (t ′, t;~0,~0), is the zero three-momentum lattice three-point function of the fourth

component of the vector current, V4, inserted at time t between the source baryon, B, located at
time t = 0 and the sink baryon, b, at time t ′. We note that R(t ′, t) = 1 in the SU(3)flavour symmetric
limit, hence any deviations from unity are purely due to SU(3)flavour symmetry breaking effects.

In Fig. 3 we display our results for R(t ′, t) for ensemble 4 in Table 1 for the Σ− → n`ν decay.
Here we see that it is possible to determine f0(q2

max) with a high level of accuracy. In order to
quantify the size of the SU(3)flavour symmetry breaking effects in the quantity, in Fig. 4 we show
the results for f0(q2

max) on each of our ensembles. The results are plotted as a function of (m2
Σ
−m2

N),
hence the SU(3)flavour symmetric limit occurs at zero on the x-axis and is indicated by the vertical
dotted line, while the physical mass splitting is indicated by the vertical dot-dashed line. It is
obvious from this figure that f0(q2

max) is < 1 away from the SU(3)flavour symmetric limit and that
the deviation from unity increases as we move further away from the SU(3)flavour symmetric limit.
We find the same qualitative behaviour in our results for the Ξ0 → Σ+`ν decay and these findings
are in agreement with earlier lattice results [6, 7].

The next step is to determine the full q2-dependence of f0(q2) and interpolate the results to
q2 = 0 to obtain a value for f1(0) = f0(0). The procedure for doing this has been described in detail
in [6], and this is the next step in our work which will be completed soon.

The other quantity that we need to calculate before we can determine |Vus| from Eq. (1.1) is
g1(0)/ f1(0). As pointed out in [6], this can also be determined from considering appropriate ratios
of two- and three-point functions. At q2

max, it is possible to determine the ratio g̃1(q2
max)/ f0(q2

max)
from the following ratio of three-point functions

R̃(t ′, t) =
Im

(
ABb

3 (t ′, t;~0,~0)
)

Re
(
V Bb

4 (t ′, t;~0,~0)
) −−−−−−→

t,(t ′−t)→∞

g1(q2
max)+ MB−Mb

MB+Mb
g2(q2

max)

f1(q2
max)+ MB−Mb

MB+Mb
f3(q2

max)
≡ g̃1(q2

max)
f0(q2

max)
. (4.7)

We show in Fig. 5 R̃(t ′, t) from ensemble 1 where we see again the excellent accuracy with which
the ratio can be determined. The dependence of this ratio on the size of the SU(3)flavour symmetry
breaking is seen in Fig. 6.

Once again, this is only the first step in calculating g1(0)/ f1(0) and so we must now subtract
the second terms in both numerator and denominator in Eq. (4.7) in order to obtain g1(q2

max)/ f1(q2
max).
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Figure 5: Ratio for g̃1(q2
max)/ f0(q2

max) as defined
in Eq. (4.7) for ensemble 1 for the Σ−→ n`ν decay.
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Figure 6: g̃1(q2
max)/ f0(q2

max) for Σ− → n`ν , as a
function of the Σ-n mass difference.

We then need to map out the q2-dependence of g1(q2)/ f1(q2) which will then enable us to interpo-
late to q2 = 0. This will be completed soon.

5. Conclusions

We have presented preliminary results from the QCDSF/UKQCD collaboration for the elec-
tromagnetic semileptonic decay form factors of the SU(3) baryon octet.

Our results for the individual quark contributions to the Dirac radii of the hyperons show that
the u(d)-quark is more broadly distributed in the proton (neutron) than in the Σ+(−), while the s-
quark in the Ξ is the least broadly distributed of the doubly-represented quarks. Similarly for the
singly-represented quarks, we find that the d(u)-quark is more broadly distributed in the proton
(neutron) than in the Ξ−(0), while the s-quark in the Σ is the least broadly distributed.

For the hyperon semileptonic form factors, we have only performed the first stage of the anal-
ysis by computing the appropriate form factors at q2

max. Our results are encouraging and show a
similar quark mass behaviour as earlier quenched [6] and N f = 2 [7] results.
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