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The IIB matrix model proposes a mechanism for dynamically generating four dimensional space–
time in string theory by spontaneous breaking of the ten dimensional rotational symmetry SO(10).
Calculations using the Gaussian expansion method (GEM) lend support to this conjecture. We
study a simple SO(4) invariant matrix model using Monte Carlo simulations and we confirm that
its rotational symmetry breaks down, showing that lower dimensional configurations dominate
the path integral. The model has a strong complex action problem and the calculations were made
possible by the use of the factorization method on the density of states ρn(x) of properly nor-
malized eigenvalues λ̃n of the space–time moment of inertia tensor. We study scaling properties
of the factorized terms of ρn(x) and we find them in agreement with simple scaling arguments.
These can be used in the finite size scaling extrapolation and in the study of the region of con-
figuration space obscured by the large fluctuations of the phase. The computed values of λ̃n are
in reasonable agreement with GEM calculations and a numerical method for comparing the free
energy of the corresponding ansatze is proposed and tested.
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1. Introduction

Matrix models have been studied intensively in the past few years in the context of non-
perturbative formulations of string theory and in the study of gauge/gravity duality. By dimen-
sionally reducing D = 10 dimensional U(N) supersymmetric (SUSY) Yang–Mills theories to zero
dimensions, one obtains the IIB Matrix Model [1] (IKKT model) which has been proposed as a
non-perturbative definition of IIB superstring theory. In this model space–time is represented by
the distribution of eigenvalues of the bosonic matrices, a feature that raises the possibility of dy-
namical compactification of the extra dimensions by Spontaneous Symmetry Breaking (SSB) of
the SO(D) rotational symmetry of the model. Such a scenario is plausible as calculations using the
Gaussian Expansion Method (GEM) indicate [2].

Monte Carlo simulations of matrix models [3, 4] could play an important role in understanding
string theories in a similar fashion that lattice QCD has contributed to the understanding of the
non–perturbative regime of quantum field theories. Unfortunately such simulations are plagued
by the complex action problem which arises when one simulates the system after integrating out
the fermionic degrees of freedom. This problem is particularly important in the lattice studies of
finite density QCD [5]. The factorization method has been proposed in [6] as a general method to
reduce the complex action problem and eliminate the overlap problem, see also [7]. The basic idea
is to control an appropriately chosen variable in order to sample regions of the configuration space
which are hard to sample using reweighting and whose contribution is crucial in the computation of
the physical observables. The study of the scaling properties of the related density of states allow
for useful extrapolations to the physical results.

We present preliminary results from calculations performed on a related zero–dimensional
matrix model proposed in [8] which realizes the scenario of dynamical compactification of space–
time dimensions [8, 9]. The model has a very strong complex action problem and bears strong
similarities to the IIB matrix model, which makes it a useful playground for testing ideas to apply
on the IIB matrix model and more generally on other interesting physical systems with a complex
action problem. We are able to show that SSB occurs consistently with the predictions in [8, 9]. The
scaling properties of the density of states are studied in detail and are found to agree with simple
scaling arguments. This is possible only by sampling heavily suppressed regions by using the
factorization method and it is crucial in the extrapolations used in order to compute the expectation
values of the SSB order parameters.

2. The Model

Consider the partition function [8]

Z =
∫

dAdψ dψ̄ e−(Sb+Sf) where Sb =
1
2

N tr(Aµ)
2 , Sf =−ψ̄ f

α (Γµ)αβ Aµψ f
β . (2.1)

Aµ (µ = 1, . . . ,D, D even) are N ×N hermitian matrices, and ψ̄ f
α and ψ f

α are N-dimensional row
and column vectors.The actions Sb and Sf have an SU(N) symmetry. The spinor index α = 1, . . . , p,
where p represents the number of components of a D-dimensional Weyl spinor, p = 2D/2−1, and
the flavor index f = 1, . . . ,Nf, where Nf represents the number of flavors. The p× p matrices Γµ are
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Figure 1: The VEV 〈λn〉0 (n = 1,2,3 and 4) in the phase quenched model Z0 are plotted for r = 1 (left) and

r = 2 (right) against
1
N

. The data for each r can be nicely fitted to straight lines meeting at the same point

(1+ r/2) at N = ∞, which demonstrates the absence of SSB.
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Figure 2: The small-x (left) and large-x (right) behavior of
1

N2 f (0)n (x) for r = 1. The straight lines are fits to
the theoretical behavior (3.1).
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Figure 3: The asymptotic behavior (3.2) for r = 1 and n = 2.The straight lines are fits to the predicted
power-law behavior using N = 8 data. The same power law is obeyed also by smaller N data, and a clear
trend towards large-N scaling is observed.
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Figure 4: (Left) The function
1

N2 logwn(x) is plotted together with the scaling function Φn(x) extracted
from the asymptotic behaviors (3.2) for r = 1 and n = 2. (Right) The solution to (2.5) is obtained by finding

the intersections of
1

N2 f (0)n (x) and
d
dx

Φn(x) for r = 1 and n= 2. The position of the intersections is indicated
by the arrows with the symbols xs and xl for the regions x < 1 and x > 1, respectively.

SO(D) gamma matrices after the Weyl projection. Thus the actions (2.1) have an SO(D) symmetry,
where the bosonic variables Aµ transform as vectors and the fermionic variables transform as Weyl
spinors. Integrating out the fermions, we obtain Z =

∫
dAe−Sb Zf[A], where Zf[A] = (detD)Nf and

D = ΓµAµ is a pN × pN matrix. The fermion determinant detD for a single flavor is complex
in general. Under parity transformation AD → −AD, Ai → Ai (i 6= D), the fermion determinant
transforms as detD → (detD)∗. This implies that detD is real for configurations with AD = 0 and
that the phase of the determinant becomes stationary for configurations with AD = AD−1 = 0. We
take the large-N limit with r = Nf/N fixed, which corresponds to the Veneziano limit. Whether
the SSB of SO(D) occurs in that limit is the issue we would like to address. For that purpose,
we consider the “moment of inertia tensor” Tµν = 1

N tr(AµAν) and its real positive eigenvalues λn

(n = 1, . . . ,D) ordered as λ1 ≥ λ2 ≥ ·· · ≥ λD. The vacuum expectation values (VEV) of these
eigenvalues 〈λn〉 play the role of the order parameters. If they turn out to be unequal in the large-N
limit, it signals the SSB of SO(D). Consider the D = 4 case where we have p = 2 and Γi = σi,
i = 1,2,3 and Γ4 = iσ4. The “phase–quenched model” is defined by

Z0 =
∫

dAe−S0[A] , S0[A] = Sb[A]−Nf log |detD [A]| . (2.2)

It is easy to show that the absence of SSB implies

〈λn〉0 = 1+
r
2

for all n = 1,2,3,4 , (2.3)

where the VEVs 〈 · 〉0 are taken with respect to (2.2), which is confirmed at infinitesimal r [8], and
also at r = 1 and r = 2 numerically in this work. In the full model, GEM calculation up to 9-th
order [9] indicate that the true vacuum is only SO(2) invariant and the 〈λn〉 are not all equal.

In order to simulate (2.1) we rewrite it as Z =
∫

dAe−S0[A] eiΓ[A]. This system is very hard to
simulate using simple reweighting due to the complex action and overlap problem which make
the simulations of large systems exponentially hard. In this work we use the factorization method
proposed in ref. [6] where one computes the density of states of a properly chosen observable
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r = 1 r = 2
n xs xl xSO(2) xSO(3) xs xl xSO(2) xSO(3)

1 2.12 1.4 1.2 1.94 1.7 1.2
2 0.49 1.29 1.4 1.2 0.48 1.36 1.7 1.2
3 0.67 1.13 0.7 1.2 0.53 1.16 0.5 1.2
4 0.75 0.5 0.5 0.51 0.1 0.3

Table 1: The solutions (xs, xl) to eq. (2.4) that correspond to the (local) maxima of ρn(x) are shown. We also
add the corresponding VEV 〈λ̃n〉 obtained by the Gaussian expansion method in [9]: xSO(2) ≡ 〈λ̃n〉 obtained
using the SO(2) ansatz and xSO(3) ≡ 〈λ̃n〉 obtained using the SO(3) ansatz. Bold/italic numbers for same r
and n are to be compared according to the text.

by studying a set of systems where the observable is constrained to a given fixed value. The
choice of the eigenvalues λn is promising since restricting their values to be large or small favors
configurations with relatively small fluctuations of the phase Γ. In this respect it is convenient to
define λ̃n=

λn
〈λn〉0

and the density of states ρn(x) =
〈

δ (x− λ̃n)
〉

and ρ(0)
n (x) =

〈
δ (x− λ̃n)

〉
0
. Then

it is easy to show that ρn(x) = 1
C ρ(0)

n (x)wn(x), where C=〈eiΓ〉0 = 〈cosΓ〉0. It follows that 〈λ̃n〉 =∫ ∞
0 dxxρn(x) and the deviation of its value from one is a measure of the effect of the phase. The

function wn(x) is defined by wn(x)=〈eiΓ〉n,x = 〈cosΓ〉n,x, where 〈 · 〉n,x denotes a VEV with respect
to the partition function Zn,x =

∫
dAe−S0 δ (x− λ̃n). It turns out that wn(x) > 0, which simplifies

our analysis significantly. Using the saddle point approximation, the problem of determining 〈λ̃n〉
can be reduced to that of minimizing the “free energy” Fn(x) =− logρn(x) by solving the saddle
point equation

d
dx

logρn(x) = f (0)n (x)+
d
dx

logwn(x) = 0 , (2.4)

where f (0)n (x) = d
dx logρ(0)

n (x). It is important that the errors due to statistics and finite N do not
propagate exponentially to 〈λ̃n〉 as a direct computation would imply.

The implementation of the above system is obtained by studying Zn,V =
∫

dAe−{S0+V (λn)},
where V (z) = 1

2 γ (z− ξ )2 and γ and ξ are real parameters. The parameter γ controls the position
and width of the peak of λ̃n and it is chosen large enough so that the results become independent
of its value. In our simulations we used γ in the range 103–107. Using the fact that ρn,V (x) =〈

δ (x− λ̃n)
〉

n,V
∝ ρ(0)

n (x)exp
{
−V

(
x〈λn〉0

)}
, where 〈 · 〉n,V is a VEV with respect to Zn,V , the

position of the peak of the distribution function ρn,V (x) is given by the solution of

f (0)n (x)−〈λn〉0V ′
(

x〈λn〉0

)
= 0 . (2.5)

If we denote the solution by xp, we use the estimators xp = 〈λ̃n〉n,V , wn(xp) = 〈cosΓ〉n,V and

f (0)n (xp) = 〈λn〉0V ′
(
〈λn〉n,V

)
= γ 〈λn〉0

(
〈λn〉n,V −ξ

)
.

3. Results

First we study the phase quenched model Z0. We simulate the system for r = 1,2 and compute
the eigenvalues 〈λn〉0. We find that 〈λn〉0(N) = 1+ r/2+O(1/N) as can be seen from fig. 1. We

5
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conclude that no SSB occurs in the phase quenched model and verify eq. (2.3). We calculate f (0)n (x)
from eq. (2.5) by simulating Zn,V . Using simple scaling arguments we find that its asymptotic
behavior at x � 1 and x � 1 is

1
N2 f (0)n (x)'

{(1
2(5−n)+ rδn1

) 1
x +an x � 1 ,

−1
2 n〈λn〉0 +

(n
2 + r

) 1
x x � 1 .

(3.1)

Similar arguments lead to the respective asymptotic behavior of wn(x)

1
N2 lnwn(x)' Φn(x) =

{
−cnx5−n (x � 1,n = 2,3,4) ,
−dnx−(4−n) (x � 1,n = 1,2,3) .

(3.2)

By varying the constants an, cn and dn, we fit our data to eqs. (3.1) and (3.2). We verify the
expected asymptotic behaviors and use the coefficients cn and dn in order to extrapolate Φn(x) to
the region in x where we find the solution to the saddle point equation (2.5). In fig. 2 we show the
scaling (3.1) for r = 1 and in fig. 3 the scaling (3.2) for r = 1 and n = 2. The solution to eq. (2.5)
is determined from the intersection of the curves 1

N2 f (0)n (x) with −Φ′
n(x) for each n. The results for

r = 1 and n = 2 are shown in fig. 4.
We use the notation xs and xl for the solutions in the x < 1 and x > 1 regions respectively

which correspond to the local maxima of ρn(x). For n = 1 we obtain only xl ≡ 〈λ̃1〉 and for n = 4
we obtain only xs ≡ 〈λ̃4〉. We tabulate the results in table 1 and we compare them with those
obtained using GEM in [9]. We note that since the dominant configurations near xl for n = 2 and xs

for n = 3 are typically two dimensional, these are to be compared with the SO(2) ansatz. Similarly,
since the dominant configurations near xl for n = 3 and xs for n = 4 are typically three dimensional,
these are to be compared with the SO(3) ansatz.

We find that 〈λ̃1〉 > 1 > 〈λ̃4〉, a relation that is clearly going to survive the large–N limit.
Therefore we conclude that SO(4) SSB manifests in the model. In order to determine the group
that SO(4) breaks to, we need to calculate the dominant peak as N → ∞. We consider the quantity
∆n=

1
N2

{
logρn(xl)− logρn(xs)

}
=Φn(xl)−Φn(xs)+Ξn , where Ξn=

∫ xl
xs

dx
{

1
N2 f (0)n (x)

}
. If ∆n > 0

the peak at xl dominates, otherwise xs. We find ∆2 ≈ 0.34 for r = 1 and ∆2 ≈ 0.25 for r = 2 and we
conclude that SSB breaks at least down to SO(2). Unfortunately ∆3 turns out to be very close to 0,
so we are unable to determine if SO(4) breaks to SO(2) as GEM predicts or to SO(3).

4. Conclusions

We have tested a scenario for dynamical compactification of space–time by simulating a toy
matrix model related to the IIB matrix model of string theory. We have shown SSB of SO(4)
rotational symmetry consistent with GEM analysis and small r calculations[8, 9]. The phase
quenched model has no SSB, confirming the expectation that the wild fluctuations of the phase
of the fermionic partition function plays a crucial role in the mechanism of SSB. Large and small
length scales are dynamically generated by these fluctuations which make the calculation of the
dominant ones in the thermodynamic limit a challenging problem. Our results indicate how to
proceed with the study of the IIB matrix model. Although the latter case is computationally more
demanding, SUSY could make SSB easier to see.
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Calculations were possible because of the use of the factorization method. By effectively
sampling large and small x regions we are able to exploit the asymptotic behaviors of ρ(0)

n (x) and
wn(x) in order to extrapolate the results to regions in x and system size which are inaccessible by
direct simulations of the phase quenched model. It is possible that a remaining overlap problem
makes the results of table 1 slightly differ from GEM results. By a generalization of the factor-
ization method[10] this problem can be overcome and achieve also better quantitative agreement.
Then Monte Carlo studies of many interesting systems hindered by the complex action problem
are hopefully going to be made possible by using the factorization method.
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