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1. Introduction

Understanding the phase diagram of QCD on the temperah@mical potentialT, i) has
many important implications in cosmology, in astrophysing in the phenomenology of heavy ion
collisions. Unfortunately, the study of QCD at nonzero loaig density by numerical simulations
on a space-time lattice is plagued by the well-known sigrbler: the fermion determinant is
complex and the Monte Carlo sampling becomes unfeasible [1]

One of the possibilities to circumvent the sign problem igpeésform Monte Carlo numerical
simulations for imaginary values of the chemical potentidtere the fermion determinant is real
and the sign problem is absent, and to infer the behaviomhthemical potential by analytic con-
tinuation. The idea of formulating a theory at imaginary rolfeal potentialu was first suggested
in Ref. [2]. Soon after there were first applications to QCB7B

The method of analytic continuation has several advantagdsed coupling3 and chemical
potentialu can be varied independently and there is no limitation fordasing lattice sizes. But
the extent of the attainable domain with reak limited by the periodicity and non-analyticities [8]
and by the accuracy of the interpolation of data for imaginar

Analytic continuation can be exploited for evaluating pbgk observables at real chemical
potential. Indeed a careful numerical analysis in SU(2)dasvn that a considerable improvement
can be achieved if ratio of polynomials are used as intetipgidunction [9]. However the main
goal of the application of the method of analytic continoatis locating the critical line on the
(T, u)-plane for realu.

In previous studies [10, 11] we investigated two-colors Q&thinite baryon chemical poten-
tial and QCD at finite isospin chemical potential. These tiesoare free from the sign problem
and simulations can be performed both at real and imaginaeyneal potential. In this way it
is possible to check the reliability of the analytic con@ition. The lesson we learned from the
aforementioned studies was that the prediction for the guseritical couplings at real chemical
potentials may be wrong if data at imaginarnare fitted according to a linear dependence.

We present here results obtained in the determination gitkadocritical line in SU(3) with
N¢ = 4 at finite baryon density [12].

2. Numerical results

We have considered consider QCD with = 4 degenerate standard staggered fermions of
massam= 0.05. Lattice simulations have been performed on %>12 lattice using the exacb
algorithm [13], properly modified for the inclusion of a fi@ichemical potential. Typical statistics
collected is 10k trajectories of 1 molecular dynamics wnigwing up to 100k trajectories for the
values of the couplings around the peak of the suscepyiloifia given observable.

In order to obtain the critical line on th@, t)-plane for realu we first need to locate the
(pseudo-)critical couplings for several fixed values of ithaginary chemical potential. This has
been done by looking for peaks in the susceptibilities ofvemiobservable. A suitable interpola-
tion of the (pseudo-)critical couplings at imaginary cheahipotential is then extrapolated to real
chemical potential.
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In SU(3) with Nt = 4 the critical line is a line of first order transitions in thesfiRoberge-
Weiss sector-(71/3)? < (u/T)? < 0. Therefore tunneling between the different phases isaegde
every few thousands trajectories (Fig. 1).
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Figure 1: (Left) Distribution of the real part of the Polyakov loop itV&) with Ny = 4 on a 13 x 4 lattice
with am=0.05 atap = 0.170 and for twof values around the transition. (Right) Monte Carlo histdrihe
real part of the Polyakov loop in SU(3) witks = 4 on a 13 x 4 lattice withan=0.05 atay = 0.170 and
3=5.066.
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Figure2: Susceptibility of the (real part of the) Polyakov loepB in SU(3) withNs =4 on a 13 x 4 lattice
with am=0.05 andau = 0.150. The solid lines represent the Lorentzian interpolation.

The critical couplingB(u?) at imaginary chemical potentig@l is determined as the value for
which the susceptibility of (the real part of) the Polyakoep exhibits a peak (Fig. 2). The peak
value at given imaginary chemical potential has been détesnthrough a Lorentzian fit. We
also checked the consistency of our determinations by mafdferrenberg-Swendsen method or
by estimating the point where the peaks in the distributibthe real part of the Polyakov loop
has equal height. Moreover we verified the determinatiormefitseudo-critical couplings do not
change if other observables are used to perform the afot@ned analyses.

In Fig. 3 the values of the critical couplingi u?) versusau? are displayed. Data do not line
up along a straight line anl(u?) cannot be parametrized by a polynomial of orgér Therefore
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Figure 3: Critical couplings obtained in SU(3) wit; = 4 on a 12 x 4 lattice witham=0.05. The dashed
vertical line indicates the boundary of the first RW secadm(u) = 17/12.

we are lead to use the following fit function:

a0+ ai(ap)* + ax(ap)* +ag(ap)®
1+ as(ap)®+as(ap)?t
We found that g?/dof ~ 1 is obtained both with sextic polynomial in(Fig. 4 (left)) and ratio of
polynomials 2nd to 4th order or 4th to 2nd order (Fig. 4 (cehte

2.1)
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Figure4: Fits to the critical couplings: (left) plain 6th order potymial, (center) ratio of a 4th to 2nd order
polynomial and (right) physical fit according to Eq. (2.3).

In addition we implementd a new fit strategy which consistaiiting down the interpolating
function in physical units ("physical" fit in Fig. 4 (right))

T(w)1]% 1+Cu?/T2 (1)
[Tc(o)] 1+ AP TE(M) +Bud /T (M)

with T. = 1/(a(B)L;) andA, B, C fit parameters. The implicit relation betwegnandu? is given
by

(2.2)

272 4,74
az(Bc(uz)”Zfloop:az(Bc(O))|27IoopX %ﬂ (2-3)

Also for the "physical" fit we get &?/dof ~ 1. Moreover we have extrapolated the critical line
down toT = 0 axis, under the assumption that the physical fit gives tleecbbehavior of the
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Figure 5: The phase diagram obtained extrapolating the critical doen to T = 0 axis by means of

Eq. (2.2).
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Figure 6: Extrapolation to real chemical potentials of the quadrétith (au)? = (0.235)3?), sextic con-
strained, ratio of polynomials and “physical” fits.
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Figure 7: Comparison of our extrapolations with other determinationthe literature. For the sake of
readability, our extrapolations have been plotted withenubr bands and labels, since they can be easily

recovered from the previous

figudeegenda D’Elia, Lombardo, Ref. [6, 7]; Azcoitet al, Ref. [14]; Fodor,

Katz, Ref. [15]; Kratochvila, de Forcrand, Ref. [16].
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critical line at realy down toT = 0 (Fig. (5)). We obtain the following estimate of the critica
value ofu on theT = 0 axis:

{1 = \/C/B Ty(0) = 2.590493) T(0). (2.4)

We have so far discussed several interpolations of the dataeiu? < 0 region. A crucial
question is to ascertain if the related extrapolationg%o- 0 are consistent between them. Unfor-
tunately, as one can inspect in Fig. 6, different interpotes lead to somewhat distinct extrapola-
tions and, unless an extra-argument is found to make onegfiftinction preferable with respect
to the others, one cannot rely on a unique extrapolatiorepa the regioru/T < 0.6. In Fig. 7
several determinations of the critical line existing in therature are presented together our re-
sults. Looking at Fig. 7, one could comment that the extrpmh of the “physical” fit exhibits the
same trend as data from reweighting, whereas that from #tie senstrained fit mimics the strong
coupling behavior [17], the other two extrapolations ofslying in-between. However, previous
determinations at real in the literature seem to be in fair agreement up @ ~ 1.2. If one takes
this common trend as benchmark for our extrapolations, pisical” and the polynomial ratio
(4,2) seem to be favoured.

We have tried to include in our fit also data at real chemicabmtial available from the lit-
erature (see Fig. 7). A serious limitation of this combinggraach is the inhomogeneity of the
data presently available, due to different lattices antksyatics. However, if the inhomogeneity of
data at reals will be reduced by new Monte Carlo determinations, the comdbifit strategy could
bring along an appreciable improvement.

3. Conclusions

We have revisited the application of the method of analytintimuation from imaginary to
real chemical potential in QCD witN; = 4 degenerate flavors. The aims were:

e to determine precisely the pseudo-critical liggpu?) in the region of negativg? (20 data
points almost uniformly distributed in the regien(11/12)? < (au)? < 0);

¢ to exploit interpolating functions sensitive to possib&vidtions of the critical line from the
guadratic behavior ip for larger absolute values ¢f (these deviations were clearly seen in
QCD-like theories, such as 2-color QCD and finite isospin Q@bere it was given com-
pelling evidence that their neglect could mislead the aitabpntinuation to real chemical
potential);

¢ to extrapolate the newly adopted interpolations to theore@if realu and to re-determine,
therefore, the critical line in QCD.

We found that deviations from the quadratic behaviou iof B.(u?) at negativeu? are visible
in QCD with Ny = 4. Several kinds of functions able to interpolate them Ieaeixtrapolations to
real u which start diverging from each other fpr/T > 0.6. The shortcomings of the method of
analytic continuation could be less severeNgr= 2 or Ny = 2+ 1 (where sensitivity to nonlinear
terms inp? could be enhanced). Moreover possible improvement coultedoy theoretical de-
velopment able to discriminate between interpolationdgycs combined numerical strategy aimed



Critical line of QCD L. Cosmai

at gathering information from different approaches (sushesveighting, canonical approach, etc.)
applied so far independently from each other.
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