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Monte Carlo simulations of QCD with four degenerate quarks at non-zero temperature and baryon

density by the method of analytic continuationan. We revealdeviations from the simple quadratic

dependence on the chemical potential visible in earlier works on the same subject. Finally, we

discuss the implications of our findings for the shape of the pseudo-critical line at real chemical

potential, comparing different possible extrapolations.
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1. Introduction

Understanding the phase diagram of QCD on the temperature-chemical potential(T,µ) has
many important implications in cosmology, in astrophysicsand in the phenomenology of heavy ion
collisions. Unfortunately, the study of QCD at nonzero baryonic density by numerical simulations
on a space-time lattice is plagued by the well-known sign problem: the fermion determinant is
complex and the Monte Carlo sampling becomes unfeasible [1].

One of the possibilities to circumvent the sign problem is toperform Monte Carlo numerical
simulations for imaginary values of the chemical potential, where the fermion determinant is real
and the sign problem is absent, and to infer the behavior at real chemical potential by analytic con-
tinuation. The idea of formulating a theory at imaginary chemical potentialµ was first suggested
in Ref. [2]. Soon after there were first applications to QCD [3–7].

The method of analytic continuation has several advantages, indeed couplingβ and chemical
potentialµ can be varied independently and there is no limitation for increasing lattice sizes. But
the extent of the attainable domain with realµ is limited by the periodicity and non-analyticities [8]
and by the accuracy of the interpolation of data for imaginary µ .

Analytic continuation can be exploited for evaluating physical observables at real chemical
potential. Indeed a careful numerical analysis in SU(2) hasshown that a considerable improvement
can be achieved if ratio of polynomials are used as interpolating function [9]. However the main
goal of the application of the method of analytic continuation is locating the critical line on the
(T,µ)-plane for realµ .

In previous studies [10, 11] we investigated two-colors QCDat finite baryon chemical poten-
tial and QCD at finite isospin chemical potential. These theories are free from the sign problem
and simulations can be performed both at real and imaginary chemical potential. In this way it
is possible to check the reliability of the analytic continuation. The lesson we learned from the
aforementioned studies was that the prediction for the pseudocritical couplings at real chemical
potentials may be wrong if data at imaginaryµ are fitted according to a linear dependence.

We present here results obtained in the determination of thepseudocritical line in SU(3) with
Nf = 4 at finite baryon density [12].

2. Numerical results

We have considered consider QCD withNf = 4 degenerate standard staggered fermions of
massam= 0.05. Lattice simulations have been performed on a 123×4 lattice using the exactΦ
algorithm [13], properly modified for the inclusion of a finite chemical potential. Typical statistics
collected is 10k trajectories of 1 molecular dynamics unit,growing up to 100k trajectories for the
values of the couplings around the peak of the susceptibility of a given observable.

In order to obtain the critical line on the(T,µ)-plane for realµ we first need to locate the
(pseudo-)critical couplings for several fixed values of theimaginary chemical potential. This has
been done by looking for peaks in the susceptibilities of a given observable. A suitable interpola-
tion of the (pseudo-)critical couplings at imaginary chemical potential is then extrapolated to real
chemical potential.
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In SU(3) with Nf = 4 the critical line is a line of first order transitions in the first Roberge-
Weiss sector−(π/3)2 ≤ (µ/T)2 ≤ 0. Therefore tunneling between the different phases is expected
every few thousands trajectories (Fig. 1).
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Figure 1: (Left) Distribution of the real part of the Polyakov loop in SU(3) with Nf = 4 on a 123×4 lattice
with am=0.05 ataµ = 0.170i and for twoβ values around the transition. (Right) Monte Carlo history of the
real part of the Polyakov loop in SU(3) withNf = 4 on a 123×4 lattice witham=0.05 ataµ = 0.170i and
β=5.066.
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Figure 2: Susceptibility of the (real part of the) Polyakov loopvsβ in SU(3) withNf = 4 on a 123×4 lattice
with am=0.05 andaµ = 0.150i. The solid lines represent the Lorentzian interpolation.

The critical couplingβ (µ2) at imaginary chemical potentialµ is determined as the value for
which the susceptibility of (the real part of) the Polyakov loop exhibits a peak (Fig. 2). The peak
value at given imaginary chemical potential has been determined through a Lorentzian fit. We
also checked the consistency of our determinations by meansof Ferrenberg-Swendsen method or
by estimating the point where the peaks in the distribution of the real part of the Polyakov loop
has equal height. Moreover we verified the determination of the pseudo-critical couplings do not
change if other observables are used to perform the aforementioned analyses.

In Fig. 3 the values of the critical couplingsβ (µ2) versusaµ2 are displayed. Data do not line
up along a straight line andβ (µ2) cannot be parametrized by a polynomial of orderµ2. Therefore
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Figure 3: Critical couplings obtained in SU(3) withNf = 4 on a 123×4 lattice witham=0.05. The dashed
vertical line indicates the boundary of the first RW sector,aIm(µ) = π/12.

we are lead to use the following fit function:

a0+a1(aµ)2+a2(aµ)4+a3(aµ)6

1+a4(aµ)2+a5(aµ)4 . (2.1)

We found that aχ2/dof∼ 1 is obtained both with sextic polynomial inµ (Fig. 4 (left)) and ratio of
polynomials 2nd to 4th order or 4th to 2nd order (Fig. 4 (center)).
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Figure 4: Fits to the critical couplings: (left) plain 6th order polynomial, (center) ratio of a 4th to 2nd order
polynomial and (right) physical fit according to Eq. (2.3).

In addition we implementd a new fit strategy which consists inwriting down the interpolating
function in physical units ("physical" fit in Fig. 4 (right))

[

Tc(µ)
Tc(0)

]2

=
1+Cµ2/T2

c (µ)
1+Aµ2/T2

c (µ)+Bµ4/T4
c (µ)

. (2.2)

with Tc = 1/(a(β )Lt) andA, B, C fit parameters. The implicit relation betweenβc andµ2 is given
by

a2(βc(µ2))|2−loop = a2(βc(0))|2−loop×
1+Aµ2/T2

c +Bµ4/T4
c

1+Cµ2/T2
c

. (2.3)

Also for the "physical" fit we get aχ2/dof ∼ 1. Moreover we have extrapolated the critical line
down toT = 0 axis, under the assumption that the physical fit gives the correct behavior of the
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Figure 5: The phase diagram obtained extrapolating the critical linedown to T = 0 axis by means of
Eq. (2.2).
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Figure 6: Extrapolation to real chemical potentials of the quadratic(with (aµ)2 = (0.235i)2), sextic con-
strained, ratio of polynomials and “physical” fits.
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Figure 7: Comparison of our extrapolations with other determinations in the literature. For the sake of
readability, our extrapolations have been plotted withouterror bands and labels, since they can be easily
recovered from the previous figure.Legenda: D’Elia, Lombardo, Ref. [6,7]; Azcoitiet al., Ref. [14]; Fodor,
Katz, Ref. [15]; Kratochvila, de Forcrand, Ref. [16].
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critical line at realµ down toT = 0 (Fig. (5)). We obtain the following estimate of the critical
value ofµ on theT = 0 axis:

µ =
√

C/B Tc(0) = 2.5904(93) Tc(0) . (2.4)

We have so far discussed several interpolations of the data in the µ2 ≤ 0 region. A crucial
question is to ascertain if the related extrapolations toµ2 > 0 are consistent between them. Unfor-
tunately, as one can inspect in Fig. 6, different interpolations lead to somewhat distinct extrapola-
tions and, unless an extra-argument is found to make one fitting function preferable with respect
to the others, one cannot rely on a unique extrapolation, except in the regionµ/T ≤ 0.6. In Fig. 7
several determinations of the critical line existing in theliterature are presented together our re-
sults. Looking at Fig. 7, one could comment that the extrapolation of the “physical” fit exhibits the
same trend as data from reweighting, whereas that from the sextic constrained fit mimics the strong
coupling behavior [17], the other two extrapolations of ours lying in-between. However, previous
determinations at realµ in the literature seem to be in fair agreement up toµ/T ≃ 1.2. If one takes
this common trend as benchmark for our extrapolations, the “physical” and the polynomial ratio
(4,2) seem to be favoured.

We have tried to include in our fit also data at real chemical potential available from the lit-
erature (see Fig. 7). A serious limitation of this combined approach is the inhomogeneity of the
data presently available, due to different lattices and systematics. However, if the inhomogeneity of
data at realµ will be reduced by new Monte Carlo determinations, the combined-fit strategy could
bring along an appreciable improvement.

3. Conclusions

We have revisited the application of the method of analytic continuation from imaginary to
real chemical potential in QCD withNf = 4 degenerate flavors. The aims were:

• to determine precisely the pseudo-critical lineβc(µ2) in the region of negativeµ2 (20 data
points almost uniformly distributed in the region−(π/12)2 ≤ (aµ)2 ≤ 0);

• to exploit interpolating functions sensitive to possible deviations of the critical line from the
quadratic behavior inµ for larger absolute values ofµ (these deviations were clearly seen in
QCD-like theories, such as 2-color QCD and finite isospin QCD, where it was given com-
pelling evidence that their neglect could mislead the analytic continuation to real chemical
potential);

• to extrapolate the newly adopted interpolations to the region of realµ and to re-determine,
therefore, the critical line in QCD.

We found that deviations from the quadratic behavior inµ of βc(µ2) at negativeµ2 are visible
in QCD with Nf = 4. Several kinds of functions able to interpolate them lead to extrapolations to
real µ which start diverging from each other forµ/T ≥ 0.6. The shortcomings of the method of
analytic continuation could be less severe forNf = 2 or Nf = 2+1 (where sensitivity to nonlinear
terms inµ2 could be enhanced). Moreover possible improvement could come by theoretical de-
velopment able to discriminate between interpolations, orby a combined numerical strategy aimed
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at gathering information from different approaches (such as reweighting, canonical approach, etc.)
applied so far independently from each other.
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