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Coherent center domains in local Polyakov loops Julia Danzer

1. Introduction

With the running and upcoming experiments at LHC, RHIC and GSI the deconfinement tran-
sition of QCD is currently a strong focus of research. We here report on our study of percolation
aspects in the deconfinement transition of QCD and SU(3) gauge theory. Preliminary results were
already presented in [1, 2]. Related studies for SU(2) gauge theory were reported in [3] – [6].

For analyzing the confinement-deconfinement transition the Polyakov loop may be used as an
order parameter (for a recent alternative proposal see [7, 8]). Wehere distinguish between local
Polyakov loopsL(~x) located at a spatial point~x and the spatially averaged loopP = V−1 ∑~x L(~x),
whereV denotes the spatial volume. The local loop is given by the trace of the product of temporal
gauge linksU4(~x, t) (Nt is the number of lattice points in time direction):

L(~x) = Tr
Nt−1

∏
t=0

U4(~x, t) , (1.1)

i.e., the Polyakov loop is a gauge transporter that propagates a static quarkat position~x forward
in time. The Polyakov loop is related to the free energyFq of a single quark via〈L(~x)〉 = 〈P〉 ∝
exp(−Fq/T ), whereT is the temperature. BelowTc the free energy is infinite,〈L(~x)〉 = 〈P〉 = 0,
and the quarks are confined. AboveTc we have a finite free energy and thus〈L(~x)〉 = 〈P〉 6= 0,
signaling deconfinement. Thus the Polyakov loop acts as an order parameter for confinement.

The gauge group SU(3) has the three center elementsz = 1,e±i2π/3. A center transformation
with a center elementz transforms the temporal gauge links at a fixed time slicet = t0: U4(~x, t0)−→
z U4(~x, t0). While the measure and the gauge action are invariant under the center transformations,
the Polyakov loop transforms non-trivially. A non-vanishing expectation value〈L(~x)〉 = 〈P〉 6= 0
thus signals the spontaneous breaking of the center symmetry. This symmetry and its spontaneous
breaking are at the core of the Svetitsky-Yaffe conjecture [9] which states that atTc the system
can be described by a 3D effective spin model with an action which is symmetric under the center
group. The spin degrees of freedom are related to the local loopsL(~x).

For such spin systems it is known that aligned spins form local clusters, and that at the critical
temperature these clusters start to percolate. Various questions arise naturally:

• Can one identify such characteristic properties of spin systems directly in QCD?

• Are these properties important only atTc, or in a finite interval of temperatures?

• What happens when one includes fermions which break the center symmetryexplicitly?

2. Properties of local Polyakov loops

We study the distribution properties of the local Polyakov loop for quenched as well as dy-
namical SU(3) gauge configurations. In the quenched case we use the Lüscher-Weisz gauge action
with lattice sizes from 203×6 to 403×12 and temperatures ranging fromT = 0.63Tc to 1.32Tc

[1]. For the full theory the configurations have been produced by the Wuppertal-Budapest group,
using a Symanzik improved gauge action and 2+1 flavors of stout-link improved staggered quarks
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Figure 1: Scatter plot of the spatially averaged Polyakov loopP in the complex plane for pure gauge theory.

at physical quark masses [10]. The temperatures range fromT = 100 MeV to 320 MeV with lat-
tice sizes 183×6,243×6,363×6,243×8 and 323×10, such that finite volume as well as scaling
studies can be performed.

Before we come to the analysis of the local loopsL(~x) we briefly summarize the behavior of
the spatially averaged loopP. This behavior is illustrated in Fig. 1, where we show scatter plots for
the values of the Polyakov loopP in the complex plane. In the lhs. plot, which is for a temperature
T = 0.63Tc, the values cluster near the origin, i.e.,〈P〉 = 0. In the deconfined phase (rhs. plot,
T = 1.32Tc) the values ofP are non-vanishing. They scatter at angles 0 and±2π/3, which reflects
the underlying center symmetry that is broken spontaneously aboveTc. In the infinite volume the
system spontaneously selects one of the three center sectors and only thecorresponding ”island” in
the complex plane is populated.

For the analysis of the distribution of theL(~x) we write the local loop as

L(~x) = ρ(~x)eiϕ(~x) . (2.1)

We study the histogramsH[ρ(~x)] of the distribution of the modulusρ(~x), as well as the histograms
H[ϕ(~x)] for the phaseϕ(~x). Analyzing the distribution of the modulusρ(~x) we found that both,
below and aboveTc, for quenched as well as for full QCD the distribution is always the same and
closely follows the distribution from Haar measure [1, 2]. From that findingwe conclude that the
relevant part of the information must be found in the phaseϕ(~x) of the local Polyakov loop.

The distribution ofH[ϕ(~x)] is shown in Fig 2. In the quenched case we see that for temper-
atures belowTc we have peaks in the distribution of the phase at all three center values. These
peaks are equally populated and average to zero (1+ ei2π/3 + e−i2π/3 = 0) when one calculates the
spatially averaged Polyakov loopP. Above the phase transition the abundance of sites increases
for one of the sectors in a process of spontaneous symmetry breaking. For full QCD the situation is
similar. For very low temperatures we have peaks of almost equal height atall three center values.
With increasing temperature the peak of the real sector starts to grow. This isbecause the fermion
determinant acts like an external field that favors the real sector.

The question is now if the phase values at the spatial positions~x are distributed independently
of each other, or if they form spatial domains as is known from spin systems. To study this question
we assign sector numbersn(~x) to the sites~x,
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Figure 2: Histograms for the distribution of the local phaseϕ(~x). We compare quenched (lhs.) and full
QCD (rhs.) at low and highT . The full curve is the Haar measure distributionH(ϕ) =

∫

dUδ (ϕ − argU).

n(~x) =











−1 for ϕ(~x) ∈ [−π +δ , −π/3−δ ] ,

0 for ϕ(~x) ∈ [−π/3+δ , π/3−δ ] ,

+1 for ϕ(~x) ∈ [π/3+δ , π −δ ] .

(2.2)

If ϕ(~x) is in none of the three intervals no sector number is assigned to the site~x. δ is a free real
and positive parameter which allows to cut lattice points~x where the corresponding phaseϕ(~x) is
near one of the local minima of the distributions in Fig. 2. The remaining lattice points~x which
survive the cut and are assigned a sector numbern(~x) can now be organized in clusters. We put
neighboring lattice sites~x,~y into the same cluster ifn(~x) = n(~y).

As a first test we investigate the number of lattice points in the three possible center sectors as
a function of temperature. In Fig. 3 we plot the occupation of the sectors for the quenched (lhs.)
and dynamical data (rhs.) forδ = 0, i.e., without any cut. We clearly see that in the quenched
case the three sectors are equally populated belowTc. At the critical temperature one of the sectors
increases its population while the other two sectors become depleted. For fullQCD (rhs.) it is the
real sector that increases its population aboveTc due to the explicit symmetry breaking from the
fermion determinant.

3. Cluster and percolation properties of center domains

We now study the dependence of the cluster size on the temperature and a possible percolation
phenomenon of the clusters. For that we plot the numberW of sites in the largest cluster (”weight
of the cluster”) normalized by the spatial volumeV as a function of temperature (Fig. 4). For the
quenched case (lhs. plot) the parameterδ was set for illustrative purposes such that 39% of the
sites are cut. For full QCD a cut of 19% was used. The plots show that below Tc the clusters
are finite with a fixed size, which leads to a volume dependence for the ratioW/V . AboveTc the
largest cluster starts to percolate and fills a fixed fraction of the volume, as can be seen from the
fact that now〈W/V 〉 is independent ofV . For the quenched case the curves seem to approach a
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Figure 3: Abundance of lattice sites in the three center sectors as a function of temperature.

non-differentiable limit forV → ∞, as expected for a first order transition. In the dynamical case a
smooth behavior seems possible.

In Fig. 5 we plot the probability for finding a percolating cluster as a functionof temperature.
Again the quenched case (lhs.) seems to develop a step function, while for the dynamical percola-
tion probability a smooth behavior seems feasible. For the latter case a more detailed finite volume
analysis is necessary for a final conclusion on the behavior of the clusters nearTc.

4. Summary and outlook

In the project reported here we explore percolation aspects at the deconfinement transition of
QCD and SU(3) lattice gauge theory. The starting point is an analysis of the phase of the local
Polyakov loops which we find to cluster around the three center values. According to that phase
we assign the lattice sites to center sectors and study the corresponding center clusters. For the
quenched case we find a sharp onset of percolation of the center clusters at the deconfinement
temperatureTc. For the case of full QCD the behavior seems to be more smooth and could be com-
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Figure 4: WeightW of the largest cluster normalized with the volumeV as function ofT .
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Figure 5: Percolation probabilityp as a function ofT .

patible with the crossover type of transition expected for full QCD. Additional finite size studies
will, however, be necessary to clearly establish that behavior.

An important question is whether the clusters and their percolation propertiescan be given a
precise meaning in the continuum limit. We have begun to study this question by comparing results
on lattices with different lattice constanta. The cluster definition, i.e., the parameterδ , is set such,
that belowTc the clusters have a fixed diameter in physical units. This is repeated for several values
of a and the flow of the parameters is monitored. First results indicate that indeed acontinuum
limit of the clusters and the percolation picture seems possible [11].
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