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1. Introduction

With the running and upcoming experiments at LHC, RHIC and GSI the de@mént tran-
sition of QCD is currently a strong focus of research. We here repoduo study of percolation
aspects in the deconfinement transition of QCD and SU(3) gauge theelyniRary results were
already presented in [1, 2]. Related studies for SU(2) gauge theagyrepgorted in [3] — [6].

For analyzing the confinement-deconfinement transition the Polyakov logjhenased as an
order parameter (for a recent alternative proposal see [7, 8])héfé distinguish between local
Polyakov loopd (X) located at a spatial poitand the spatially averaged lo®p=V~15,L(X),
whereV denotes the spatial volume. The local loop is given by the trace of the girotitemporal
gauge linkJ4(X;t) (N; is the number of lattice points in time direction):

Ne—1
LX) =T Usa(X 1), 1.1
(X) rtll a(%,t) (1.1)

i.e., the Polyakov loop is a gauge transporter that propagates a staticagymoitionx forward
in time. The Polyakov loop is related to the free eneffgyof a single quark vigL(X)) = (P) O
exp(—Fq/T), whereT is the temperature. BeloW the free energy is infinitglL(X)) = (P) =0,
and the quarks are confined. AboVewe have a finite free energy and thigX)) = (P) # O,
signaling deconfinement. Thus the Polyakov loop acts as an order pardonetenfinement.

The gauge group SU(3) has the three center elenzents, e512’/3. A center transformation
with a center elemenmztransforms the temporal gauge links at a fixed time sliegg: U4 (X, tp) —
zU4(X to). While the measure and the gauge action are invariant under the censéornaetions,
the Polyakov loop transforms non-trivially. A non-vanishing expectatiane/(L (X)) = (P) # 0
thus signals the spontaneous breaking of the center symmetry. This symnkity spontaneous
breaking are at the core of the Svetitsky-Yaffe conjecture [9] whictesttnat afl. the system
can be described by d3effective spin model with an action which is symmetric under the center
group. The spin degrees of freedom are related to the local logps

For such spin systems it is known that aligned spins form local clustetghanhat the critical
temperature these clusters start to percolate. Various questions arisglytatu

e Can one identify such characteristic properties of spin systems directly D?QC
e Are these properties important only&t or in a finite interval of temperatures?

e What happens when one includes fermions which break the center synewrplicitly?

2. Propertiesof local Polyakov loops

We study the distribution properties of the local Polyakov loop for queshasewell as dy-
namical SU(3) gauge configurations. In the quenched case we uségbledr-Weisz gauge action
with lattice sizes from 29x 6 to 4G x 12 and temperatures ranging froln= 0.63T; to 1.32T,

[1]. For the full theory the configurations have been produced by thppéftal-Budapest group,
using a Symanzik improved gauge action andXflavors of stout-link improved staggered quarks
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Figurel: Scatter plot of the spatially averaged Polyakov |®dp the complex plane for pure gauge theory.

at physical quark masses [10]. The temperatures rangeTreni00 MeV to 320 MeV with lat-
tice sizes 18x 6,243 x 6,36 x 6,24% x 8 and 33 x 10, such that finite volume as well as scaling
studies can be performed.

Before we come to the analysis of the local lo&g®) we briefly summarize the behavior of
the spatially averaged lodp This behavior is illustrated in Fig. 1, where we show scatter plots for
the values of the Polyakov lodpin the complex plane. In the Ihs. plot, which is for a temperature
T = 0.63T, the values cluster near the origin, i.é2) = 0. In the deconfined phase (rhs. plot,
T = 1.32T¢) the values oP are non-vanishing. They scatter at angles 0-a8d/3, which reflects
the underlying center symmetry that is broken spontaneously alove the infinite volume the
system spontaneously selects one of the three center sectors and aalgrésponding "island” in
the complex plane is populated.

For the analysis of the distribution of th€X) we write the local loop as

LX) = p(X)e?™. (2.1)

We study the histogrants[p(X)] of the distribution of the modulus(X), as well as the histograms
H[¢ (X)] for the phasep(X). Analyzing the distribution of the modulys(X) we found that both,
below and abové., for quenched as well as for full QCD the distribution is always the sarde an
closely follows the distribution from Haar measure [1, 2]. From that findiegconclude that the
relevant part of the information must be found in the pha&8@ of the local Polyakov loop.

The distribution ofH [¢ (X)] is shown in Fig 2. In the quenched case we see that for temper-
atures belowl; we have peaks in the distribution of the phase at all three center valuese Th
peaks are equally populated and average to zetoed¥/3 + e 127/3 — 0) when one calculates the
spatially averaged Polyakov lodp Above the phase transition the abundance of sites increases
for one of the sectors in a process of spontaneous symmetry breakinfylIQCD the situation is
similar. For very low temperatures we have peaks of almost equal heightlatee center values.
With increasing temperature the peak of the real sector starts to grow. Tasasse the fermion
determinant acts like an external field that favors the real sector.

The question is now if the phase values at the spatial posiXians distributed independently
of each other, or if they form spatial domains as is known from spin systéorstudy this question
we assign sector numbeangX) to the sitest,
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Figure 2: Histograms for the distribution of the local phag&). We compare quenched (lhs.) and full
QCD (rhs.) at low and higfi. The full curve is the Haar measure distributidfg) = [dU (¢ — argU).

-1 for ¢(X) € [-n+0, —m/3-9],
n(x) = 0 for ¢(X) € [—-m/3+0d,m/3-9], (2.2)
+1 for ¢(X) € [m/3+5, m—9].

If ¢(X) is in none of the three intervals no sector number is assigned to thé gites a free real
and positive parameter which allows to cut lattice pokwshere the corresponding phagéX) is
near one of the local minima of the distributions in Fig. 2. The remaining lattice powtsich
survive the cut and are assigned a sector numpércan now be organized in clusters. We put
neighboring lattice site® y into the same cluster if(X) = n(y).

As a first test we investigate the number of lattice points in the three possilikr sentors as
a function of temperature. In Fig. 3 we plot the occupation of the sectothdoquenched (lhs.)
and dynamical data (rhs.) f@ar =0, i.e., without any cut. We clearly see that in the quenched
case the three sectors are equally populated b&lowt the critical temperature one of the sectors
increases its population while the other two sectors become depleted. FQCIrhs.) it is the
real sector that increases its population ab@vdue to the explicit symmetry breaking from the
fermion determinant.

3. Cluster and percolation propertiesof center domains

We now study the dependence of the cluster size on the temperature asgildgpercolation
phenomenon of the clusters. For that we plot the nuidber sites in the largest cluster ("weight
of the cluster”) normalized by the spatial voluiMeas a function of temperature (Fig. 4). For the
quenched case (Ihs. plot) the parameiervas set for illustrative purposes such that 39% of the
sites are cut. For full QCD a cut of 19% was used. The plots show thatvbRldthe clusters
are finite with a fixed size, which leads to a volume dependence for theWwatib AboveT. the
largest cluster starts to percolate and fills a fixed fraction of the volumearabe seen from the
fact that now(W/V) is independent of. For the quenched case the curves seem to approach a
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Figure 3: Abundance of lattice sites in the three center sectors asciidin of temperature.

non-differentiable limit folV — oo, as expected for a first order transition. In the dynamical case a
smooth behavior seems possible.

In Fig. 5 we plot the probability for finding a percolating cluster as a funatioiemperature.
Again the quenched case (lhs.) seems to develop a step function, while fdyrthmical percola-
tion probability a smooth behavior seems feasible. For the latter case a mateddfétée volume
analysis is necessary for a final conclusion on the behavior of the idustarT,.

4. Summary and outlook

In the project reported here we explore percolation aspects at thafademnent transition of
QCD and SU(3) lattice gauge theory. The starting point is an analysis ofhisepof the local
Polyakov loops which we find to cluster around the three center valuesordiog to that phase
we assign the lattice sites to center sectors and study the correspondiegatesters. For the
guenched case we find a sharp onset of percolation of the centerslasthe deconfinement
temperaturd.. For the case of full QCD the behavior seems to be more smooth and coudbe ¢
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Figure4: WeightW of the largest cluster normalized with the volumes function ofT.
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Figure5: Percolation probability as a function off.

patible with the crossover type of transition expected for full QCD. Addifidinée size studies
will, however, be necessary to clearly establish that behavior.

An important question is whether the clusters and their percolation propeatielse given a
precise meaning in the continuum limit. We have begun to study this question by Gogimsults
on lattices with different lattice constaat The cluster definition, i.e., the paramederis set such,
that belowT. the clusters have a fixed diameter in physical units. This is repeated fasealues
of a and the flow of the parameters is monitored. First results indicate that indeactiauum
limit of the clusters and the percolation picture seems possible [11].
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