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1. Introduction

Interest in SU(N) gauge theories with large N began with the pioneeringestofi[1], who
showed that in the limit N- c and the gauge coupling,— 0, with the 't Hooft couplingh = g?N
fixed, one gets a non-trivial but simplified theory. Many qualitative feggtf hadron physics can
be explained by appealing to this limit.

The theory with an infinite number of colors has also been used to undgrsteous facets
of the phase diagram of strongly interacting matter. At very high tempegttrengly interacting
matter is known to exist in a deconfined, chirally symmetric state. The nature afathsition to
this state is quite sensitive to the quark sector. For infinitely massive quar&s)as a first order
deconfinement transition for ¥ 2. For two massless quarks, on the other hand, one has a second
order, chiral symmetry restoring transition. If a small mass is given to thekguane expects a
crossover, and a critical point at some nonzero baryon density. §ef2Rfor a detailed discussion
of the nature of the transition. A rich phase structure has also beentecftic the large baryon
density regime. In particular, a chirally symmetric, confined phase hasfreditted, using the 't
Hooft limit [3].

For phase diagrams based on arguments about the theory with an infinitemoincblors to
be relevant for the theory with three colors, it is important to explore theitsakid the large N
arguments for N=3. Analogies have also been drawn between the highregorpegphase of QCD
and the solvable, conforma¥” =4 supersymmetric SU(N- o) theory [4]. Lattice studies of the
theory with moderate values of N can provide one intermediate step in thisat@mmey giving
an estimate of the size of the/[4? corrections.

In this report, we present results for a study of the thermodynamics ofifé)gauge theories
at finite temperatures for N = 4,6, and combine them with results for N=3 tongestamate of the
applicability of the large N arguments for the theory with three colors. For,NeeBhave used
the simulation results of Ref. [5], supplementing them with new simulations wiesreseary (in
particular, for the measurement of the latent heat), and analyzed thegthsisame technigues as
used for the N=4 and 6 theories. For estimating the thermodynamic quantitiesevilee standard
methods [5]. The pressure, p, a\d= € — 3p, whereg is the energy density, are calculated from
the plaquette data,
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wheredP(B,T) =P(B,T)—P(B, T =0) is the difference in the plaquette observables between the
finte temperature lattice and the corresponding zero temperature latticdatedcat the coupling
B. Tois some reference temperatuds /dloga s related to the beta function. We use a nonpertur-
bative estimate for the beta function, using the scaling.dfom [6]. Details of the beta function
used by us can be found in [2].

In the next section we discuss the latent heat of the deconfinement trafgitibe theory with
N=3,4,6 number of colors. In Sec. 3 we study the equation of state of thid)3jllfon plasma.
A comparison of the energy density and pressure for SU(3,4,6) givas idea of the size of the
1/N? corrections. In the final section we discuss the physical implications afesuits.



Continuum Thermodynamics of the SU(N) Gauge Theory Saumen Datta

SU(N) gauge theories have been investigated previously on the latticartioupar, the latent
heat of the transition has been studied in Ref. [7, 8], while the equatioataf Isas been studied
in Ref. [9, 10]. The focus of our work is in getting results for the contmuimit. We use a
nonperturbative beta function, and multiple lattice spacings at each tenmgeffatuthis purpose.
We have also employed several spatial volumes at each lattice spacirayhidie thermodynamic
limit. Details of our work, including the cutoff and volume dependence, canhb@ined in Ref.
[2]. The results reported here are our estimates of the infinite volume, oamimesults. An
earlier version of our study, which used the two-loop beta function, additeasurements at fewer
temperatures, was presented in the previous year's conference [11]

2. Latent Heat

SU(N) gauge theories have a first order deconfinement transition for3d\ A first order
transition is characterized by a latent heat associated with the transitiotthe=mfinite volume
system, the latent heat can be defined as
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(2.1)

wheree(T;+0T) are the energy densities of the confined and deconfined phases;tiesly, and
the second equality follows from the fact that pressure is continuoosstie transition.

For a finite volume system, as is necessarily used in a numerical lattice computaten
cannot get a separation of the phases, and so, a straightfadWarelO limit will not work. We use
the following method to extract the latent heat [2]. Since the confined andett@nfined phases
are resolved by the Polyakov lodp|, we identify the configurations at the transition point with
IL| < L¢ as being in the confined phase and those With> L, as being in the deconfined phase,
wherel; andLy, are suitably chosen values. In order for the procedure to be meahargfunot
too sensitive on the choice bf, andLg, it is important thatL| shows a two-peak structure. Figure
1 (a) shows the distribution df | in the transition regime of SU(4) gauge theoty, andL are
chosen at the valley (see Ref. [2] for details). The distributiodR(T ) for the two phases defined
by the|L| cut is quite stable, as shown in Fig. 1 (b): for values of the coufirig the transition
regime, the histograms f@P(T) for the two phases defined by thg cut essentially coincide.

From the histograms a¥P(T) for the two phases at, the latent heat can be calculated using
Eq.(2.1) and Eq.(1.1):
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o
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where, as mentioned in the introductiah3/dloga is evaluated from the nonperturbative scale-
setting in [6]. We find that the finite volume effects in the latent heat are réhge for SU(3),
where one needs an aspect ratie- LT > 6 to reach the thermodynamic limit. On the other hand,
for SU(4) and SU(6) gauge theories an aspect rétio 3 suffices to reach the thermodynamic
limit. This is probably related to the large correlation length of the Polyakov loo#)(3) gauge
theory near the transition. Our estimates for the thermodynamic limits of the lat@nidnehe
theories with N = 3, 4 and 6 are shown in Table 1. To estimate the sensitivity oéshéts on the
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Figure 1: (a) Distribution of the Polyakov loop, [L|, in the transitioegion for SU(4) gauge theory. (b)
Distribution of the plaquettd?(T) — P(T = 0), for the cold and hot phases, identified by configurationk wit
IL| < L¢ and|L| > Ly, respectively.

Table 1: Latent heat for SU(N) gauge theories with N=3, 4 and 6. Thebmmnin brackets are the errors on
the least significant digits; the first one is statistical #relsecond, systematic.

N 3 4 6
Ln/T2 | 1.67(4)(4) 4.32(6)(6) 11.93(34)(5)

choices ofL¢, we varyLy — L¢ by +20%; the corresponding change in the latent heat is shown as
a systematic error in the table.

Our results for the latent heat are in good agreement with Ref. [8], withilather uncertain-
ties of that study. The values obtained by Ref. [7] are somewhat hiGmegoing from N=3 to 4,
the latent heat is seen to scale faster than the CagjrirN2 — 1, the dimensionality of the adjoint
representation. On the other hand, the scaling between N=4 and 6 istenhgiith a Casimir
scaling. Taking all the three values in the Table, one can get a good fit tel#t®n

Ln
daTS

1.61(4)
N2

0.3883) — (2.3)
where the errors are statistical only. Eq.(2.3) indicates a large correatiba leading term for the
theory with three colors.

3. Equation of State

We first discusd\, which is the trace of the energy-momentum tensor and therefore is a mea-
sure of conformal symmetry breaking. Fig. 2 shawir SU(N) with different number of colors,
measured at different temperatures, and normalisefi§.

As the figure shows) scales nicely withda except very close td;. The size of the IN?
correction is smaller than the statistical accuracy of our datal forl.25T;. Closer toT. we see
a deviation from scaling witlds. The peak ofA is seen to become higher and move closef:to
with increasing N. At higher temperaturésscales approximately lik€? [12], for the temperature
range investigated by us [2].
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Figure 2: A/daT# for SU(3-6) gauge theories, plotted agaifistT. For SU(3), we have used the plaquette
data of Ref. [5].

The pressure was calculated using the so-called integral method [5),. Bg\hich deter-
minesp(T) in terms of pressure at some reference tempergi(ifg). We find thatp(T) ~ 0
within our errors till temperatures 0.9T.. This is probably related to the fact that glueballs are
much heavier thaf., and therefore are not excited substantially except very cloge e there-
fore evaluatep/T# by takingBo(T < 0.8T;) as the lower limit of the integral, with the knowledge
that the omitted additive constant is smaller than the statistical error.
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Figure 3: (a) The pressure and energy density for SU(N) gauge thewithadN=3,4 and 6, normalized to
their Stefan-Boltzman values. (b) The same for the entremsttly.

Other bulk thermodynamic quantities can be obtained from a knowledgéTgfandA(T).
Figure 3 shows a summary of our results for energy density, pressdien&ropy density for SU(N)
gauge theories, normalized to their Stefan-Boltzman limits. The Stefan-Boltzahaeswsed are
the results calculated for the free theory on the lattice, for the integral met8yd [
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As the figures show, even at temperatures closeTg dne reaches- 85% or less of the Stefan-
Boltzman value. The figures also show that, plotted as a function of tempertitergize of the
1/N? corrections is small in all the three observables, except for very clokevibere I/N? cor-
rections are visible in the energy density and entropy, as expected feosiztible YN? correction
in the latent heat, Eq. (2.3).

4. Summary and Discussions.

We have presented results for bulk thermodynamic quantities for SU(Njegdeories with
N =3, 4 and 6. Our results for latent heat of the transition and its depeaaenN are summarized
in Table 1 and Eqg. (2.3). We find that the latent heat for the theory with tiolees is substantially
less than that with larger number of colors: the size of the leading correcti&n. (2.3) is
substantial for N=3.

The bulk thermodynamic quantities are shown in Fig. 3. It is found that eveEmgeratures
close to 4T, one reaches only 85% of the Stefan-Boltzman value. We also see that except
very close toT, the size of the leading/N? correction is small, when we compare the bulk
thermodynamic quantities measured at the same vallig Bf Interestingly, the scaling with the
number of colors is better when looked at as functiof gT. than when considered as function of
the 't Hooft coupling. Figure 4 (a) shows the entropy density plotted ag#ie 't Hooft coupling,
defined through the V scheme and evaluated at the scdle\&#here the running is done through
our nonperturbative beta function. Considerabf&l4 correction is now seen, in particular for
T < 1.5T.. Of course, the scaling with will be different depending on the scheme chosen to
define the coupling. The figure also shosyss for the 4" = 4 supersymmetric theory [4]. This
theory is seen to have deviations from the Stefan-Boltzmann value of thesszarees pure SU(N)
theory at the highest temperatures, but a very different depenoanice
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Figure 4. (a) Entropy density, in units of the Stefan-Boltzman valsieown as a function of the 'tHooft
coupling. The pink dotted line is the result for th& = 4 supersymmetric SU(N) theory for large N [4].
(b) p/ps shown as a function of/es. The diagonal line is the line of conformal theories whilg, b
construction, the Stefan-Boltzman limit is the point (1,Ihe weak coupling results for the different theories
are also shown.

The large deviation of the thermodynamic quantities from the Stefan-Boltzmaloe even
at 4T, and the fact that some strongly coupled conformal field theories show stheNgations
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from Stefan-Boltzmann limit, have been used in the literature to speculate alstugngly cou-
pled, conformal regime in pure SU(N) gauge theories. The thermodynaesigks can be used to
investigate the feasibility of such a phase. Following Ref. [14], in Fig. 4v®)plot the energy
density vs. pressure, normalized by the corresponding Stefan-Boltzvadures. By construction
the point at (1,1) is the Stefan-Boltzmann limit, while the diagonal line denotdercoality. Also
shown are the weak coupling lines for the theories with the different nuofoeslors [15]. We
find that for the temperature regime of interest to RHCZT, the theory is far from conformal.
At higher temperatures, the theory approaches conformality, but it isrddloghe weak coupling
line than the conformal line, indicating the absence of a strongly coupledfirroal phase in the
SU(N) gluon plasma.

The computations were carried out on the workstation farm of the departrhéreoretical
physics, TIFR. We thank Ajay Salve for technical support.
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