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1. Introduction

Interest in SU(N) gauge theories with large N began with the pioneering studies of [1], who
showed that in the limit N→ ∞ and the gauge coupling,g → 0, with the ’t Hooft couplingλ = g2N
fixed, one gets a non-trivial but simplified theory. Many qualitative features of hadron physics can
be explained by appealing to this limit.

The theory with an infinite number of colors has also been used to understand various facets
of the phase diagram of strongly interacting matter. At very high temperatures, strongly interacting
matter is known to exist in a deconfined, chirally symmetric state. The nature of the transition to
this state is quite sensitive to the quark sector. For infinitely massive quarks,one has a first order
deconfinement transition for N> 2. For two massless quarks, on the other hand, one has a second
order, chiral symmetry restoring transition. If a small mass is given to the quarks, one expects a
crossover, and a critical point at some nonzero baryon density. See Ref. [2] for a detailed discussion
of the nature of the transition. A rich phase structure has also been predicted for the large baryon
density regime. In particular, a chirally symmetric, confined phase has beenpredicted, using the ’t
Hooft limit [3].

For phase diagrams based on arguments about the theory with an infinite number of colors to
be relevant for the theory with three colors, it is important to explore the validity of the large N
arguments for N=3. Analogies have also been drawn between the high temperature phase of QCD
and the solvable, conformalN =4 supersymmetric SU(N→ ∞) theory [4]. Lattice studies of the
theory with moderate values of N can provide one intermediate step in this connection, by giving
an estimate of the size of the 1/N2 corrections.

In this report, we present results for a study of the thermodynamics of the SU(N) gauge theories
at finite temperatures for N = 4,6, and combine them with results for N=3 to get an estimate of the
applicability of the large N arguments for the theory with three colors. For N=3, we have used
the simulation results of Ref. [5], supplementing them with new simulations where necessary (in
particular, for the measurement of the latent heat), and analyzed them using the same techniques as
used for the N=4 and 6 theories. For estimating the thermodynamic quantities, weuse the standard
methods [5]. The pressure, p, and∆ = ε −3p, whereε is the energy density, are calculated from
the plaquette data,

∆
T 4 = 6N4

t
∂β

∂ loga
δP(β ,T ),

p(T )

T 4 −
p(T0)

T 4
0

= 6N4
t

∫ β

β0

dβ δP(β ,T ) (1.1)

whereδP(β ,T ) = P(β ,T )−P(β ,T = 0) is the difference in the plaquette observables between the
finte temperature lattice and the corresponding zero temperature lattice, calculated at the coupling
β . T0 is some reference temperature.∂β/∂ loga is related to the beta function. We use a nonpertur-
bative estimate for the beta function, using the scaling ofTc from [6]. Details of the beta function
used by us can be found in [2].

In the next section we discuss the latent heat of the deconfinement transition for the theory with
N=3,4,6 number of colors. In Sec. 3 we study the equation of state of the SU(N) gluon plasma.
A comparison of the energy density and pressure for SU(3,4,6) gives us an idea of the size of the
1/N2 corrections. In the final section we discuss the physical implications of ourresults.
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SU(N) gauge theories have been investigated previously on the lattice. In particular, the latent
heat of the transition has been studied in Ref. [7, 8], while the equation of state has been studied
in Ref. [9, 10]. The focus of our work is in getting results for the continuum limit. We use a
nonperturbative beta function, and multiple lattice spacings at each temperature, for this purpose.
We have also employed several spatial volumes at each lattice spacing, to reach the thermodynamic
limit. Details of our work, including the cutoff and volume dependence, can beobtained in Ref.
[2]. The results reported here are our estimates of the infinite volume, continuum results. An
earlier version of our study, which used the two-loop beta function, and had measurements at fewer
temperatures, was presented in the previous year’s conference [11].

2. Latent Heat

SU(N) gauge theories have a first order deconfinement transition for N≥ 3. A first order
transition is characterized by a latent heat associated with the transition. Forthe infinite volume
system, the latent heat can be defined as

Lh

T 4
c

= lim
δT→0

(

ε(Tc +δT )

T 4
c

−
ε(Tc −δT )

T 4
c

)

= lim
δT→0

(

∆(Tc +δT )

T 4
c

−
∆(Tc −δT )

T 4
c

)

(2.1)

whereε(Tc±δT ) are the energy densities of the confined and deconfined phases, respectively, and
the second equality follows from the fact that pressure is continuous across the transition.

For a finite volume system, as is necessarily used in a numerical lattice computation, one
cannot get a separation of the phases, and so, a straightforwardδT → 0 limit will not work. We use
the following method to extract the latent heat [2]. Since the confined and thedeconfined phases
are resolved by the Polyakov loop|L|, we identify the configurations at the transition point with
|L| < Lc as being in the confined phase and those with|L| > Lh as being in the deconfined phase,
whereLc andLh are suitably chosen values. In order for the procedure to be meaningful and not
too sensitive on the choice ofLh andLc, it is important that|L| shows a two-peak structure. Figure
1 (a) shows the distribution of|L| in the transition regime of SU(4) gauge theory.Lc andLh are
chosen at the valley (see Ref. [2] for details). The distribution ofδP(T ) for the two phases defined
by the|L| cut is quite stable, as shown in Fig. 1 (b): for values of the couplingβ in the transition
regime, the histograms forδP(T ) for the two phases defined by the|L| cut essentially coincide.

From the histograms ofδP(T ) for the two phases atTc, the latent heat can be calculated using
Eq.(2.1) and Eq.(1.1):

Lh

T 4
c

= 6N4
t

∂β
∂ loga

(

P(T +
c )−P(T−

c )
)

(2.2)

where, as mentioned in the introduction,∂β/∂ loga is evaluated from the nonperturbative scale-
setting in [6]. We find that the finite volume effects in the latent heat are ratherlarge for SU(3),
where one needs an aspect ratioζ = LT > 6 to reach the thermodynamic limit. On the other hand,
for SU(4) and SU(6) gauge theories an aspect ratioζ ≥ 3 suffices to reach the thermodynamic
limit. This is probably related to the large correlation length of the Polyakov loop for SU(3) gauge
theory near the transition. Our estimates for the thermodynamic limits of the latent heat for the
theories with N = 3, 4 and 6 are shown in Table 1. To estimate the sensitivity of theresults on the
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Figure 1: (a) Distribution of the Polyakov loop, |L|, in the transition region for SU(4) gauge theory. (b)
Distribution of the plaquette,P(T )−P(T = 0), for the cold and hot phases, identified by configurations with
|L| < Lc and|L| > Lh, respectively.

Table 1: Latent heat for SU(N) gauge theories with N=3, 4 and 6. The numbers in brackets are the errors on
the least significant digits; the first one is statistical andthe second, systematic.

N 3 4 6
Lh/T 4

c 1.67(4)(4) 4.32(6)(6) 11.93(34)(5)

choices ofLc,h, we varyLh −Lc by±20%; the corresponding change in the latent heat is shown as
a systematic error in the table.

Our results for the latent heat are in good agreement with Ref. [8], within thelarger uncertain-
ties of that study. The values obtained by Ref. [7] are somewhat higher.On going from N=3 to 4,
the latent heat is seen to scale faster than the CasimirdA = N2−1, the dimensionality of the adjoint
representation. On the other hand, the scaling between N=4 and 6 is consistent with a Casimir
scaling. Taking all the three values in the Table, one can get a good fit to therelation

Lh

dAT 4
c

= 0.388(3)−
1.61(4)

N2 (2.3)

where the errors are statistical only. Eq.(2.3) indicates a large correctionto the leading term for the
theory with three colors.

3. Equation of State

We first discuss∆, which is the trace of the energy-momentum tensor and therefore is a mea-
sure of conformal symmetry breaking. Fig. 2 shows∆ for SU(N) with different number of colors,
measured at different temperatures, and normalised bydAT 4.

As the figure shows,∆ scales nicely withdA except very close toTc. The size of the 1/N2

correction is smaller than the statistical accuracy of our data, forT > 1.25Tc. Closer toTc we see
a deviation from scaling withdA. The peak of∆ is seen to become higher and move closer toTc

with increasing N. At higher temperatures,∆ scales approximately likeT 2 [12], for the temperature
range investigated by us [2].
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Figure 2: ∆/dAT 4 for SU(3-6) gauge theories, plotted againstTc/T . For SU(3), we have used the plaquette
data of Ref. [5].

The pressure was calculated using the so-called integral method [5], Eq.(1.1), which deter-
mines p(T ) in terms of pressure at some reference temperaturep(T0). We find thatp(T ) ∼ 0
within our errors till temperatures∼ 0.9Tc. This is probably related to the fact that glueballs are
much heavier thanTc, and therefore are not excited substantially except very close toTc. We there-
fore evaluatep/T 4 by takingβ0(T < 0.8Tc) as the lower limit of the integral, with the knowledge
that the omitted additive constant is smaller than the statistical error.
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Figure 3: (a) The pressure and energy density for SU(N) gauge theorieswith N=3,4 and 6, normalized to
their Stefan-Boltzman values. (b) The same for the entropy density.

Other bulk thermodynamic quantities can be obtained from a knowledge ofp(T ) and∆(T ).
Figure 3 shows a summary of our results for energy density, pressure and entropy density for SU(N)
gauge theories, normalized to their Stefan-Boltzman limits. The Stefan-Boltzman values used are
the results calculated for the free theory on the lattice, for the integral method [13]:

εSB

T 4 = 3
pSB

T 4 =
π2dA

15
G(Nt) where G(Nt) = 1+

8π2

21
1

N2
t

+ · · · (3.1)
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As the figures show, even at temperatures close to 4Tc, one reaches∼ 85% or less of the Stefan-
Boltzman value. The figures also show that, plotted as a function of temperature, the size of the
1/N2 corrections is small in all the three observables, except for very close toTc where 1/N2 cor-
rections are visible in the energy density and entropy, as expected from the sizable 1/N2 correction
in the latent heat, Eq. (2.3).

4. Summary and Discussions:

We have presented results for bulk thermodynamic quantities for SU(N) gauge theories with
N = 3, 4 and 6. Our results for latent heat of the transition and its dependence on N are summarized
in Table 1 and Eq. (2.3). We find that the latent heat for the theory with threecolors is substantially
less than that with larger number of colors: the size of the leading correctionin Eq. (2.3) is
substantial for N=3.

The bulk thermodynamic quantities are shown in Fig. 3. It is found that even at temperatures
close to 4Tc, one reaches only∼ 85% of the Stefan-Boltzman value. We also see that except
very close toTc, the size of the leading 1/N2 correction is small, when we compare the bulk
thermodynamic quantities measured at the same value ofT/Tc. Interestingly, the scaling with the
number of colors is better when looked at as function ofT/Tc than when considered as function of
the ’t Hooft coupling. Figure 4 (a) shows the entropy density plotted against the ’t Hooft coupling,
defined through the V scheme and evaluated at the scale 2πT , where the running is done through
our nonperturbative beta function. Considerable 1/N2 correction is now seen, in particular for
T < 1.5Tc. Of course, the scaling withλ will be different depending on the scheme chosen to
define the coupling. The figure also showss/sSB for theN = 4 supersymmetric theory [4]. This
theory is seen to have deviations from the Stefan-Boltzmann value of the samesize as pure SU(N)
theory at the highest temperatures, but a very different dependenceon λ .
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Figure 4: (a) Entropy density, in units of the Stefan-Boltzman value,shown as a function of the ’tHooft
coupling. The pink dotted line is the result for theN = 4 supersymmetric SU(N) theory for large N [4].
(b) p/pSB shown as a function ofε/εSB. The diagonal line is the line of conformal theories while, by
construction, the Stefan-Boltzman limit is the point (1,1). The weak coupling results for the different theories
are also shown.

The large deviation of the thermodynamic quantities from the Stefan-Boltzmann value even
at 4 Tc, and the fact that some strongly coupled conformal field theories show similar deviations
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from Stefan-Boltzmann limit, have been used in the literature to speculate abouta strongly cou-
pled, conformal regime in pure SU(N) gauge theories. The thermodynamicsresults can be used to
investigate the feasibility of such a phase. Following Ref. [14], in Fig. 4 (b)we plot the energy
density vs. pressure, normalized by the corresponding Stefan-Boltzmann values. By construction
the point at (1,1) is the Stefan-Boltzmann limit, while the diagonal line denotes conformality. Also
shown are the weak coupling lines for the theories with the different numberof colors [15]. We
find that for the temperature regime of interest to RHIC,∼ 2Tc, the theory is far from conformal.
At higher temperatures, the theory approaches conformality, but it is closer to the weak coupling
line than the conformal line, indicating the absence of a strongly coupled, conformal phase in the
SU(N) gluon plasma.

The computations were carried out on the workstation farm of the department of theoretical
physics, TIFR. We thank Ajay Salve for technical support.
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