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QCD with 2+1 flavors via Taylor expansion and imaginary cheahpotential Rossella Falcone

1. Introduction

Understanding the phase diagram of QCD in the temperature - chemicatipb{€) plane
is crucial for many implications in astrophysics, cosmology and in the phenaognof heavy-ion
collisions. While the lattice formulation of QCD provided fruitful information aitirtemperature,
at non-vanishing chemical potential lattice simulations suffer from the sigisiggm. Only in recent
years several different methods [1.[2[B[}[]5[]6. 7] have beeisattto at least partly overcome
this obstacle.

In this work we present results from lattice calculations in QCD with dynamicat lejd
strange quark degrees of freedom at non zero temperature and imyagjfireanical potential. Our
calculations are performed with a tree level Symanzik-improved gauge amtidran improved
staggered fermion action, the p4-action with 3-link smearing (p4ffl3) [& fabus on a range of
temperatures in the vicinity of the pseudocritical temperafiyrat vanishing chemical potential,
0.94< T/T. < 1.08. At each temperature we carried out simulations on lattices with temporal
extentN: = 4. Following [9], at each temperature the strange quark mass was adjosiisd
physical value and the light up and down quark masses were taken t@géeeatate and equal to
ms/10, which corresponds to a constant Goldstone pion mass of about @20Tis allows us to
utilize the zero temperature results and interpolationf]of [9] for the coioves lattice parameters
into physical units. For definiteness, we apply a valudof 202 MeV for the pseudocritical
temperature at zero density. To insure small finite volume effects the spatiah& has been
chosen to b&/Y/3T = 4. The number of gauge field configurations analyzed varies from 1000
to 2000, the configurations are separated by 10 trajectories. All nurhenigalations have been
performed using the Rational Hybrid Monte Carlo (RHMC) algoritfin [I(, 11

At each temperature we performed calculations at several values of tgeemaquark chem-
ical potential,Lq = i ,q = u,d,s which was taken to be degenerate for all three flavors. In the
following, we first present results relevant for an estimate of the pswitidal line in the (T, 1)
plane and then compare our findings at imaginary chemical potential withgeddained within
the Taylor expansion approach.

2. The pseudocritical line at imaginary chemical-potential

Atimaginary chemical potential and high temperature, the phase diagra@ff€atures the
Roberge Weiss transition gf = iiT /3, associated with the phase of the Polyakov loop. The line of
Roberge Weiss transitions endsTat Tryw. At lower temperature the ‘quark-gluon plasma’ region
is limited by a chiral transition[[d,]4] which continues to real valueguofin this work we focus
our study on the range of temperature34< T /T. < 1.08, i.e. to the vicinity of the pseudocritical
temperaturd, at zero density.

In order to study the phase structure of QCD in tfey;) plane, it is very useful[]4] to
consider the phase of the Polyakov lobpx), that we can parameterize &) = |L(x)|€%. In the
presence of dynamical fermions and with imaginary chemical potential wereiq) = —6 at low
temperatures = 1, /T), and(@) ~ 2kr/3 for (k—1/2) < %9 < (k+1/2) at high temperatures;
the valuesd = 2(k+ 1/2) /3 correspond to the Roberge Weiss transitions fromfnsector to
the other. In Fig[]1 we show our results @) versus the imaginary chemical potential for different
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Figure 1. The Polyakov loop phasg) as a function of the imaginary chemical potential for 4 difet beta
values. The vertical dashed line corresponds to the RWitramst au® = 11/3N;.

values of temperatures. Ffr= 3.290 which is below the critical value af = 0 we found that
(@) starts to deviate from zero right away at non vanishing potential. Fofth@lues above the
critical one we observe thatp) stays close to 0 until a certain temperature dependent valagg, of
is reached where the Polyakov loop phase begins to decrease withsingrga We will take that
value as an estimate for the location of the pseudocritical chiralfljne [4]. A joitipe phase is not
observed at any temperature which indicates that allfoualues are belowgrwy

In Fig.[2 we display our results for the modulus of the Polyakov loop and thedigark chiral
condensate as functions of the imaginary chemical potentigBfer3.320,3.335,3.351 which
correspond to temperatures of 204.8 MeV, 209.6 MeV and 218.2 Me\éctisply [§]. The chiral
condensate is defined as

(TrM~Y(mg)), g=u,d,s (2.1)

whereNg is the spatial volume anll the fermionic matrix. In the same figure we also display the
behavior of the Polyakov loop susceptibility

XL =Ng (L3 —(L)?) (2.2)

as a function ofy, for the same beta values. In the upper row of fig. 2 we indicate by velitieal
the estimates for the criticgl, values and their errors as obtained from the phase of the Polyakov
loop. It is seen, most clearly at the largest temperature investigated, ttiet region where the
Polyakov phase starts to deviate from 0 also the chiral condensate eghiisigswhile the modulus
of the Polyakov loop decreases.

Based on the estimates for the pseudocritigalalues, to leading order ip /T the critical
line can be parameterized as

TC%') — 1—tp(Ng, my) <#r>2+ﬁ<<#r)4> 2.3)
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Figure 2: Chiral condensate and Polyakov loop as functions of the iima&g chemical potential (upper
row) for beta values above the critical value. The verticastted line corresponds to the RW transition,
the vertical continuous ones to the estimation of the @itig from the Polyakov loop phase; (lower row)
Polyakov loop susceptibility as function gf for the same beta values.

whereT; is the critical temperature at zero chemical potential. The coefficient of duérlg term,

to, has been calculated for various cases, see the collecti¢n]in [12]. |{§ Fieft) we compare
our data points off¢(u)/T¢ with results which have been obtained from reweighting simulations
at p = 0 within the same discretization scheme as ours.[]In [6] two rather heavk fjasors
were taken into account whereas in][14] the number of flavors was 3 swititer masses as in our
case. Although the error bars are large the comparison suggests thatthturet, grows withN¢
which is consistent with a behavier N¢ /N, found in largeN, expansion[[45]. In Fig]3 (right) we
show our results fit. We checked the stability of the fit by choosing diftewerges in the chemical
potential values. Considering the entire range of values wetfird0.89(4), discarding the first
value we find; = 0.89(5) and discarding the last onig,= 1.02(12).
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Figure 3: The pseudocritical line at imaginapy: comparison between our data points and results from the
literature [$]1}] (left); our fit results (right).
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3. Thequark number density at imaginary chemical potential

For a large homogeneous system, the pressure and its first deriy#tieegiark number den-
sities, are defined as

p 1

nu7d7s o 1 5|n9f
T3 VT20uy4s

(3.2)

where the partition functior®” is a function of the volum¥, temperaturdl, quark massesy, 4 s
and chemical potentiajs, 4 s. Note that for imaginary chemical potential the quark number density
is purely imaginary [16].

We calculated the quark number density at various values of the imaginanyicil potential
u =ip. InFig.[4 (left) we show our results for the light,, | = u,d, and the strange quark number
density,ng, at the temperaturé = 209.6 MeV. We fitted our data to the ansatz

On(p) = A (¢ — 1?)° (3.3)

which was suggested if [17]. This ansatz takes into account that thk gquarber density is
an odd function of the chemical potential. Moreover, if the exporeist less than 1, EqE.I%
leads to a singularity in the quark number susceptibilitg.aEq. [3.B can also be derived from
the singular part of thén2” in the vicinity of a critical pointc = yf, with e given by the critical
exponenta ase=1— a. In Fig.[4 (right) we show the results of the fit to the light quark density
obtained at a temperature of 209.6 MeV. A fit to our entire interval and ewithconstrained gives
A =10567), c = 0.28514) ande = 1.30(28). In the rang€0.15,0.26] of ay;, we obtainA =
57(54), c=0.276(15) ande = 1.06(36). We thus find thaé is consistent with 1 and substantially
larger than the value.R8(2) found in [1T] while c exceedsnT /3 slightly. We interpret these
results as to indicate that the regular contributiontnt®” are dominating the number density at
the temperatures investigated (see [13)]).
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Figure 4: (left) nj andns in comparision; (right) quark number density at T=209.6 MeV fitted to the
form predicted by a simple critical behavior at imaginangctical potential. The vertical line indicates the
Roberge Weiss transition.
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Figure5: The light quark number density at 209.6 MeV calculated agimary chemical potentials (points)
and from Taylor expansion (curves with error bands). The ginrve from ] takes into account coeffi-
cients up to 6th order. The blue curve has been obtained frorowen computations of the coefficients until
fourth order which have less statistics.

One of the approaches to QCD at finite density is based on the Taylors&panf the pressure
in terms of the quark chemical potentials around a geneyie (L0, Ud 0, Hs0),

P

T2l = Z Cin(flu — [1u,0) (Pl — fla.0)' (s — flso)" (3.4)
k,I,n

with the abbreviatiorily = 1iq/T and the coefficients

1 9k 9 o ,p
Gn = aiinl a0 o' 2f" (ﬁ) (3.5)
evaluated atip. Correspondingly, the number density of e.g. the u quark is given by
Ny, ~ N PP A
T3l = quln(uu—uu,o)k (g — fia.0)' (s — fiso)"- (3.6)
k,I,n

Usually the coefficients are computedafo = 0 but they could also be calculated at imaginary
values for the chemical potentials. This is work in progress.

In Fig. B we compare our data for the quark number density calculated ainamgghemical
potentials with predictions from the Taylor expansion at a temperature 062068V and at the
same lattice parameters. Uppp/T ~ 0.4 there is practically no difference between the predictions
obtained from Taylor expansion up to fourth and 6th orflgr [18]. Atdaxglues ofy the 6th order
Taylor curve starts to deviate from the fourth order one and bendswards, thus qualitatively
describing this trend of the data correctly. Still, the errors arising frormamting the Taylor series
at sixth order become sizeablela T ~ 0.4 at this temperature.

4. Summary and conclusions

We have studied QCD with 2+1 flavors at nonzero temperature and roctzemical potential
on a line of constant physics with the strange quark mass adjusted to itsgdlwgdie and the pion
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mass of about 220 MeV. The simulations have been carried out at imagimamyical potentials. It
turned out that the temperatures of up t08I at which the computations were performed are be-
low the endpoinfigy of a line of Roberge Weiss transitions. Instead, we could identify a cvesso
line at which phase and modulus of the Polyakov loop as well as the chirdeogate change their
behavior. The curvature of this line was estimated,as 0.89(2) which is not inconsistent with
the literature. Furthermore, we calculated quark number densities at imagirsard compare our
data with results obtained via Taylor expansion method. Up, 1@ ~ 0.4 good agreement was
observed.
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