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QCD with 2+1 flavors via Taylor expansion and imaginary chemical potential Rossella Falcone

1. Introduction

Understanding the phase diagram of QCD in the temperature - chemical potential (T,µ) plane
is crucial for many implications in astrophysics, cosmology and in the phenomenology of heavy-ion
collisions. While the lattice formulation of QCD provided fruitful information at finite temperature,
at non-vanishing chemical potential lattice simulations suffer from the sign problem. Only in recent
years several different methods [1, 2, 3, 4, 5, 6, 7] have been devised to at least partly overcome
this obstacle.

In this work we present results from lattice calculations in QCD with dynamical light and
strange quark degrees of freedom at non zero temperature and imaginary chemical potential. Our
calculations are performed with a tree level Symanzik-improved gauge actionand an improved
staggered fermion action, the p4-action with 3-link smearing (p4fat3) [8]. We focus on a range of
temperatures in the vicinity of the pseudocritical temperatureTc at vanishing chemical potential,
0.94 < T/Tc < 1.08. At each temperature we carried out simulations on lattices with temporal
extentNt = 4. Following [9], at each temperature the strange quark mass was adjustedto its
physical value and the light up and down quark masses were taken to be degenerate and equal to
ms/10, which corresponds to a constant Goldstone pion mass of about 220 MeV. This allows us to
utilize the zero temperature results and interpolations of [9] for the conversion of lattice parameters
into physical units. For definiteness, we apply a value ofTc = 202 MeV for the pseudocritical
temperature at zero density. To insure small finite volume effects the spatial volume has been
chosen to beV1/3T = 4. The number of gauge field configurations analyzed varies from 1000
to 2000, the configurations are separated by 10 trajectories. All numerical simulations have been
performed using the Rational Hybrid Monte Carlo (RHMC) algorithm [10, 11].

At each temperature we performed calculations at several values of the imaginary quark chem-
ical potential,µq = iµI ,q = u,d,s which was taken to be degenerate for all three flavors. In the
following, we first present results relevant for an estimate of the pseudocritical line in the(T,µI )

plane and then compare our findings at imaginary chemical potential with results obtained within
the Taylor expansion approach.

2. The pseudocritical line at imaginary chemical-potential

At imaginary chemical potential and high temperature, the phase diagram of QCD features the
Roberge Weiss transition atµc

I = πT/3, associated with the phase of the Polyakov loop. The line of
Roberge Weiss transitions ends atT = TRW. At lower temperature the ‘quark-gluon plasma’ region
is limited by a chiral transition [3, 4] which continues to real values ofµ. In this work we focus
our study on the range of temperatures 0.94< T/Tc < 1.08, i.e. to the vicinity of the pseudocritical
temperatureTc at zero density.

In order to study the phase structure of QCD in the(T,µI ) plane, it is very useful [4] to
consider the phase of the Polyakov loop,L(x), that we can parameterize asL(x) = |L(x)|eiφ . In the
presence of dynamical fermions and with imaginary chemical potential we expect〈φ〉=−θ at low
temperatures (θ ≡ µI/T), and〈φ〉 ∼ 2kπ/3 for (k−1/2) < 3

2π θ < (k+1/2) at high temperatures;
the valuesθ = 2(k+ 1/2)π/3 correspond to the Roberge Weiss transitions from oneZ3 sector to
the other. In Fig. 1 we show our results for〈φ〉 versus the imaginary chemical potential for different
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Figure 1: The Polyakov loop phase〈φ〉 as a function of the imaginary chemical potential for 4 different beta
values. The vertical dashed line corresponds to the RW transition ataµc

I = π/3Nt .

values of temperatures. Forβ = 3.290 which is below the critical value atµI = 0 we found that
〈φ〉 starts to deviate from zero right away at non vanishing potential. For theβ values above the
critical one we observe that〈φ〉 stays close to 0 until a certain temperature dependent value ofaµI

is reached where the Polyakov loop phase begins to decrease with increasingµI . We will take that
value as an estimate for the location of the pseudocritical chiral line [4]. A jumpof the phase is not
observed at any temperature which indicates that all ourT values are belowTRW

In Fig. 2 we display our results for the modulus of the Polyakov loop and the light quark chiral
condensate as functions of the imaginary chemical potential forβ = 3.320,3.335,3.351 which
correspond to temperatures of 204.8 MeV, 209.6 MeV and 218.2 MeV respectively [9]. The chiral
condensate is defined as

〈ψ̂ψ〉q ≡
1
4

1
N3

σ Nt
〈TrM−1(mq)〉, q = u,d,s (2.1)

whereN3
σ is the spatial volume andM the fermionic matrix. In the same figure we also display the

behavior of the Polyakov loop susceptibility

χL = N3
σ

(

〈L2〉−〈L〉2) (2.2)

as a function ofµI , for the same beta values. In the upper row of Fig. 2 we indicate by verticallines
the estimates for the criticalµI values and their errors as obtained from the phase of the Polyakov
loop. It is seen, most clearly at the largest temperature investigated, that inthe region where the
Polyakov phase starts to deviate from 0 also the chiral condensate exhibitsa rise while the modulus
of the Polyakov loop decreases.

Based on the estimates for the pseudocriticalµI values, to leading order inµ/T the critical
line can be parameterized as

Tc(µ)

Tc
= 1− t2(Nf ,mf )

( µ
πT

)2
+O

(

( µ
πT

)4
)

(2.3)
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Figure 2: Chiral condensate and Polyakov loop as functions of the imaginary chemical potential (upper
row) for beta values above the critical value. The vertical dashed line corresponds to the RW transition,
the vertical continuous ones to the estimation of the critical µI from the Polyakov loop phase; (lower row)
Polyakov loop susceptibility as function ofµI for the same beta values.

whereTc is the critical temperature at zero chemical potential. The coefficient of the leading term,
t2, has been calculated for various cases, see the collection in [12]. In Fig. 3 (left) we compare
our data points onTc(µ)/Tc with results which have been obtained from reweighting simulations
at µ = 0 within the same discretization scheme as ours. In [6] two rather heavy quark flavors
were taken into account whereas in [14] the number of flavors was 3, withsimilar masses as in our
case. Although the error bars are large the comparison suggests that thecurvaturet2 grows withNf

which is consistent with a behavior∼ Nf /Nc found in largeNc expansion [15]. In Fig. 3 (right) we
show our results fit. We checked the stability of the fit by choosing different ranges in the chemical
potential values. Considering the entire range of values we findt2 = 0.89(4), discarding the first
value we findt2 = 0.89(5) and discarding the last one,t2 = 1.02(12).

Figure 3: The pseudocritical line at imaginaryµ : comparison between our data points and results from the
literature [6, 14] (left); our fit results (right).
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3. The quark number density at imaginary chemical potential

For a large homogeneous system, the pressure and its first derivatives, the quark number den-
sities, are defined as

p
T4 =

1
VT3 lnZ (3.1)

nu,d,s

T3 =
1

VT2

∂ lnZ

∂ µu,d,s
(3.2)

where the partition functionZ is a function of the volumeV, temperatureT, quark massesmu,d,s

and chemical potentialsµu,d,s. Note that for imaginary chemical potential the quark number density
is purely imaginary [16].

We calculated the quark number density at various values of the imaginary chemical potential
µ = iµI . In Fig. 4 (left) we show our results for the light,nl , l = u,d, and the strange quark number
density,ns, at the temperatureT = 209.6 MeV. We fitted our data to the ansatz

ℑn(µI ) = AµI (c
2−µI

2)e (3.3)

which was suggested in [17]. This ansatz takes into account that the quark number density is
an odd function of the chemical potential. Moreover, if the exponente is less than 1, Eq. 3.3
leads to a singularity in the quark number susceptibility atc. Eq. 3.3 can also be derived from
the singular part of thelnZ in the vicinity of a critical pointc = µc

I , with e given by the critical
exponentα ase= 1−α . In Fig. 4 (right) we show the results of the fit to the light quark density
obtained at a temperature of 209.6 MeV. A fit to our entire interval and withc unconstrained gives
A = 105(67), c = 0.285(14) ande = 1.30(28). In the range[0.15,0.26] of aµI , we obtainA =

57(54), c = 0.276(15) ande= 1.06(36). We thus find thate is consistent with 1 and substantially
larger than the value 0.28(2) found in [17] while c exceedsπT/3 slightly. We interpret these
results as to indicate that the regular contributions tolnZ are dominating the number density at
the temperatures investigated (see also [13]).

0 0.05 0.1 0.15 0.2 0.25
aµ

I

-0.1

0

0.1

0.2

0.3

0.4

Im
 n

(µ
I)

Im n
u/d

Im n
s

Figure 4: (left) nl andns in comparision; (right) quark number densitynl at T=209.6 MeV fitted to the
form predicted by a simple critical behavior at imaginary chemical potential. The vertical line indicates the
Roberge Weiss transition.

5



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
1
8
3

QCD with 2+1 flavors via Taylor expansion and imaginary chemical potential Rossella Falcone

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  0.05  0.1  0.15  0.2  0.25

Im
 n

 (
 µ

I)
 

aµI

our data
coeff until c6
coeff until c4

Figure 5: The light quark number density at 209.6 MeV calculated at imaginary chemical potentials (points)
and from Taylor expansion (curves with error bands). The pink curve from [18] takes into account coeffi-
cients up to 6th order. The blue curve has been obtained from our own computations of the coefficients until
fourth order which have less statistics.

One of the approaches to QCD at finite density is based on the Taylor expansion of the pressure
in terms of the quark chemical potentials around a genericµ0 = (µu,0,µd,0,µs,0),

p
T4(µ̂) = ∑

k,l ,n

ckln(µ̂u− µ̂u,0)
k(µ̂d − µ̂d,0)

l (µ̂s− µ̂s,0)
n (3.4)

with the abbreviation̂µq = µq/T and the coefficients

ckln =
1

k!l !n!
∂ k

∂ µ̂u
k

∂ l

∂ µ̂d
l

∂ n

∂ µ̂s
n

( p
T4

)

(3.5)

evaluated atµ0. Correspondingly, the number density of e.g. the u quark is given by

nu

T3(µ̂) = ∑
k,l ,n

kckln(µ̂u− µ̂u,0)
k−1(µ̂d − µ̂d,0)

l (µ̂s− µ̂s,0)
n. (3.6)

Usually the coefficients are computed atµq,0 = 0 but they could also be calculated at imaginary
values for the chemical potentials. This is work in progress.

In Fig. 5 we compare our data for the quark number density calculated at imaginary chemical
potentials with predictions from the Taylor expansion at a temperature of 209.6 MeV and at the
same lattice parameters. Up toµI/T ≃ 0.4 there is practically no difference between the predictions
obtained from Taylor expansion up to fourth and 6th order [18]. At larger values ofµI the 6th order
Taylor curve starts to deviate from the fourth order one and bends downwards, thus qualitatively
describing this trend of the data correctly. Still, the errors arising from trucanting the Taylor series
at sixth order become sizeable atµI/T ≃ 0.4 at this temperature.

4. Summary and conclusions

We have studied QCD with 2+1 flavors at nonzero temperature and nonzero chemical potential
on a line of constant physics with the strange quark mass adjusted to its physical value and the pion
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mass of about 220 MeV. The simulations have been carried out at imaginarychemical potentials. It
turned out that the temperatures of up to 1.08Tc at which the computations were performed are be-
low the endpointTRW of a line of Roberge Weiss transitions. Instead, we could identify a crossover
line at which phase and modulus of the Polyakov loop as well as the chiral condensate change their
behavior. The curvature of this line was estimated ast2 = 0.89(2) which is not inconsistent with
the literature. Furthermore, we calculated quark number densities at imaginary µ and compare our
data with results obtained via Taylor expansion method. Up toµI/T ≃ 0.4 good agreement was
observed.
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