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1. Introduction

At asymptotically high temperature (T ), properties of strongly interacting matter described by
Quantum Chromodynamics (QCD) can be calculated using perturbative techniques. In this limit,
it is known that the collective excitations of quarks develop a mass gap (thermal mass) and a decay
rate proportional to gT and g2T , respectively, where g denotes the gauge coupling [1]. Furthermore,
the dispersion relation splits into two branches, the normal and plasmino modes. As the decay rate
parametrically grows faster than the thermal mass as g increases, it is naïvely expected that the
quark quasi-particles cease to exist as T is lowered. On the other hand, quark number scaling of
the elliptic flow observed in RHIC experiments indicates the existence of quasi-particles having a
quark quantum number [2]. To understand properties of the matter near Tc, especially the quasi-
particle nature of elementary excitations, therefore, it is desirable to explore the spectral properties
of quarks within nonperturbative techniques.

Recently, the correlation function of quarks at nonzero T has been analyzed on the quenched
lattice with size up to N3

σ ×Nτ = 643×16 in Landau gauge [3]. In these studies, it is found that the
quark correlation function above Tc obtained on the lattice is well reproduced by the two-pole ansatz
for the spectral function, where the two poles correspond to the normal and plasmino modes. In the
chiral limit these modes have identical quasi-particle masses, which are identified to be the thermal
mass, that are approximately proportional to T . These calculations, however, also showed that the
quasi-particle masses, which perturbatively arise through the resummation of infra-red sensitive
loops [1], are strongly dependent on the physical volume, V , used in the lattice calculations.

The purpose of the present study is to extend the analysis in Refs. [3] to much larger spatial
volume, N3

σ ×Nτ = 1283 × 16 [4]. This analysis enables us to investigate the spatial volume de-
pendence in more detail. The large spatial volume also allows to directly analyze the momentum
dependence of excitation spectra, i.e. the dispersion relations, more precisely. To obtain better
understanding on the spectral property of quarks, in addition to the analysis of the spectral func-
tion, we also try to examine the quark self-energy by numerically taking the inverse of the quark
propagator.

2. Quark spectral function and fitting ansatz

Excitation properties of the quark field are encoded in the quark spectral function ρµν(ω,~p),
with µ and ν denoting Dirac indices. The Dirac structure of ρµν(ω,~p) at finite temperature is
decomposed as

ρµν(ω,~p) = ρ0(ω, p)(γ0)µν −ρv(ω, p)(~̂p ·~γ)µν +ρs(ω, p)1µν , (2.1)

where p = |~p| and ~̂p = ~p/p. In the present study we consider the spectral function above Tc for
two cases; (1) at zero momentum, and (2) in the chiral limit. In these cases, the Dirac structure
of ρµν(ω,~p) are decomposed by using projection operators [3]. With p = 0, ρv(ω, p) vanishes in
Eq. (2.1) and ρµν(ω,~p =~0) is decomposed with the projection operators L± = (1± γ0)/2 as

ρ(ω,~0) = ρM
+ (ω)L+γ0 +ρM

− (ω)L−γ0. (2.2)
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In the chiral limit and for T > Tc, the system possesses the chiral symmetry and ρs(ω, p) vanishes.
In this case, ρµν(ω,~p) is decomposed with the projection operators P±(~p) = (1± γ0~̂p ·~γ)/2 as

ρ(ω,~p) = ρP
+(ω, p)P+(~p)γ0 +ρP

−(ω, p)P−(~p)γ0. (2.3)

In order to extract ρµν(ω,~p) from lattice QCD simulations we have analyzed the quark corre-
lation function in Euclidean space

Sµν(τ,~p) =
1
V

∫
d3xd3yeip·(x−y)〈ψµ(τ ,~x)ψ̄ν(0,~y)〉, (2.4)

on the lattice in quenched approximation in Landau gauge. Nonperturbatively-improved clover
fermion is used for the analysis. Equation (2.4) is related to the spectral function as

Sµν(τ,~p) =
∫ ∞

−∞
dω

e(1/2−τT )ω/T

eω/2T + e−ω/2T ρµν(ω,~p). (2.5)

In order to examine the quark spectral function from lattice correlator, we follow the approach
taken in [3], which makes use of a two-pole ansatz for the spectrum,

ρM,P
+ (ω) = Z1δ (ω −E1)+Z2δ (ω +E2). (2.6)

Here, Z1,2, and E1,2 > 0, are fitting parameters that will be determined from correlated fits to the
lattice correlator: Z1,2 and E1,2 represent the residues and positions of poles, respectively. When
comparing the fit results with spectral functions obtained in perturbative calculations one can iden-
tify the pole at ω = E1 to be the normal mode, while the one at ω =−E2 corresponds to the plas-
mino mode [5, 6]. To determine the fit parameters with correlated fits, we use lattice data points
at τmin ≤ τ/a ≤ Nτ − τmin with τmin = 4. We found that the ansatz Eq. (2.6) gives a reasonable
chi-square, χ2/dof ' 1, over wide parameter ranges [3]; see, however, Ref. [4] which discusses
problems associated with the analysis of the spectral function with an ansatz.

3. Thermal mass and dispersion relations

The quark spectral function is analyzed (1) for p = 0 as a fuctions of bare quark mass, m0,
and (2) for m0 = 0 as a fuctions of p. For each case, we use the projection Eqs. (2.2) and (2.3),
respectively.

In the analysis of ρM
± (ω) at p = 0 on the largest lattice with Nσ/Nτ = 8, we found that the

m0 dependence of fitting parameters qualitatively agrees with previous results obtained on lattices
with Nσ/Nτ = 4 and 3 in Ref. [3]. From the m0 dependence of ρM

± (ω) one can define the critical
hopping parameter for the chiral limit and the thermal mass, mT [3, 4]. In Fig. 1, we show the value
of mT with Nσ/Nτ = 8, 4 and 3 for T/Tc = 1.5 and 3. To infer the thermal mass in the infinite
volume limit, we performed an extrapolation of mT to infinite volume with an ansatz mT (1/V ) ∼
mT (0)exp(c/V ) using the results with Nσ/Nτ = 8 and 4. The result of this extrapolation is shown
in Fig. 1. Within the extrapolation, the value of mT (1/V → 0) coincides the one obtained with
Nσ/Nτ = 8 within the statistical error.

Next, we set m0 = 0 and analyze the momentum dependence of the excitation spectra at
nonzero momentum using the decomposition given in Eq. (2.3). In Fig. 2 we show the momentum
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Figure 1: Extrapolation of the thermal mass of the quark mT obtained by the pole ansatz to the infinite
volume limit for T/Tc = 3, 1.5.
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Figure 2: Dependences of the fitting parameters E1 and E2 and the ratio Z2/(Z1+Z2) on the lattice momen-
tum p̂ = (1/a)sin(pa) for T/Tc = 1.5 and 3. See, the text for the explanation of other lines.

dependence of E1 and E2 normalized by mT and Z2/(Z1+Z2) for T/Tc = 1.5 and 3. The horizontal
axis represents the momentum of free Wilson fermions on the lattice, p̂ = (1/a)sin pa, normalized
by mT . The figure shows that E1 > E2 is satisfied in accordance with the relation between the nor-
mal and plasmino dispersions at asymptotically high temperature. The figure also shows that the
value of E2 for the lowest non-zero momentum, pmin = 2π(Nτ/Nσ )T , is significantly lower than
mT . Provided that the value of E2 in our two-pole ansatz represents the dispersion relation of the
plasmino mode, this result serves as direct evidence for the existence of the plasmino minimum in
the non-perturbative analysis. One, however, has to be careful with this interpretation because the
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Euclidean correlator is insensitive to the spectral function at low energy, |ω| . T , and analysis of
the spectrum in this energy range has large uncertainty [4].

4. Quark self-energy

In order to investigate dynamical properties of the system in lattice simulations, one has to
take the analytic continuation from a Euclidean correlation function obtained on the lattice to a
real-time propagator. This analytic continuation, however, is a famous ill-posed problem, because
one has to infer the real-time propagator, which is a continuous function, from finite and noisy data
obtained on the Monte Carlo simulations. In previous sections, we have used an ansatz Eq. (2.5)
for the spectral function to avoid this difficulty. Although such an analysis would be convenient to
understand a qualitative structure of the spectrum, details of the spectrum is not accessible. Even
if one uses the maximum entropy analysis which infers the spectral function without introducing
an ansatz, the resulting spectral image has uncertainty in the analyses of lattice correlators with
typical statistics. To make the analytic continuation more robust, therefore, it is desirable to have a
different formula which relates real- and imaginary-time functions besides Eq. (2.5).

Here, we propose to exploit the inverse propagator for this purpose. The inverse of the retarded
quark propagator, SR(ω, p), is written as[

SR(ω, p)
]−1

=
[
SR

0 (ω, p)
]−1 −ΣR(ω, p), (4.1)

where SR
0 (ω, p) and ΣR(ω, p) denote the retarded free-quark propagator and self-energy, respec-

tively. Let us first derive a formula like Eq. (2.5) relating [SR(ω, p)]−1 to a Euclidean function. For
this purpose we first remark that [SR(ω, p)]−1 is analytic in the upper-half complex-energy plane,
C+, as well as SR(ω, p). This statement is easily verified by the fact that ΣR(ω, p) is analytic in
C+ by definition. Using this property of [SR(ω, p)]−1 and Kramers-Kronig relation, by taking a
similar procedure to derive Eq. (2.5) one arrives at a formula which connects the inverse retarded
propagator to a Euclidean function

[
S̃
]−1

(τ , p) =
∫ ∞

−∞
dω

e(1/2−τT )ω/T

eω/2T + e−ω/2T Im
[
SR(ω, p)

]−1
=−

∫ ∞

−∞
dω

e(1/2−τT )ω/T

eω/2T + e−ω/2T ImΣR(ω, p),

(4.2)

where [S̃]−1(τ , p) is the inverse of the Matsubara propagator S̃(τ , p). Remark, however, that
Eq. (4.2) cannot apply to τ = 0. In the last equality of Eq. (4.2) we have used the fact that
[S0(ω, p)]−1 is real1, and hence Im[S(ω, p)]−1 =−ImΣR(ω, p).

The inverse propagator [S̃]−1(τ, p) is calculated by inverting the correlation function S̃(τ , p)
obtained on the lattice. Since S̃(τ , p) is block-diagonal in frequency space, this inversion is most
conveniently taken after the Fourier transformation, i.e.[

S̃
]−1

(τ , p) = T ∑
n

[
S̃(iωn, p)

]−1 e−iτωn , (4.3)

with Matsubara frequency ωn = (2n+1)πT , where [ ]−1 in the r.h.s. represents an inverse of 4×4
matrix for Dirac indices, while that in the l.h.s. means the inverse of the whole propagator. Since

1On the lattice, however, [S0(ω, p)]−1 takes the imaginary part as a discretization effect.
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Eq. (4.2) has the same form as Eq. (2.5), once [S]−1(τ , p) is constructed one can infer the real-time
self-enegy ImΣ(ω, p) with the same techniques to analyze the spectral function with Eq. (2.5), such
as the maximum entropy method.

Remarks in constructing [S̃]−1(τ, p) are in order here. First, [S̃]−1(τ, p) is not the thermal
average of the fermion matrix K = iD/−m. This is because the propagator in the l.h.s. of Eq. (4.1)
is defined by the thermal average of K−1. The thermal average thus must be taken for the inverse
of K. Second, to obtain [S̃]−1(τ , p) one needs all elements of S̃(τ, p) including the value at τ = 0.
For correlators having a positive mass dimension, S̃(τ, p) is singular at τ = 0 in the continuum
limit, and one must exclude this point from the analysis. The quark correlator, on the other hand,
has zero mass dimension and takes a finite value even at the origin. No difficulty thus in principle
arises with the use of this point. The use of S̃(τ, p) near the source, however, is troublesome
because correlators with small τ/a receive strong lattice artifacts due to the overlap of operators on
the lattice. We will later investigate this effect by directly analysing [S̃]−1(τ, p).

The analysis of [S̃]−1(τ , p) and ImΣR(ω, p) has more advantages. First, in the perturbative
analysis of quark propagator one must first calculate the self-energy. In this sense, the self-energy
is more useful and fundamental quantity than the propagator in the analytic studies. If one wants
to compare the analytic result with the lattice one, the comparison is usually made in terms of the
propagator. The data of the inverse propagator, [S̃]−1(τ , p), on the other hand, enables to make this
comparison in terms of the self-energy. Next, microscopic physics behind the spectral properties
would become more apparent through the analysis of ImΣ(ω, p). Because the value of ImΣ(ω, p) is
related to elementary processes via the optical theorem, one can give a direct interpretations to the
structure of ImΣ(ω, p). Of course, ρ(ω, p) and ImΣ(ω, p) should have one-to-one correspondence
under a given regularization, and in principle one of these functions must contain all information of
excitation properties. In lattice simulations, however, one cannot determine the real-time function
definitely. The analysis of a different function thus can make different physics more apparent.

Because the same correlator as in Eq. (2.5) is used in the construction of [S̃]−1(τ , p), one
may think that Eq. (4.2) does not provide any new information on the real-time function besides
Eq. (2.5). We, however, remark that Eq. (4.2) encodes the analyticy of the inverse propagator in
C+, which is not taken into account in Eq. (2.5). An appropriate use of Eq. (4.2) thus should enable
us to extract additional information on the real-time function.

In Fig. 3, we show the inverse quark propagator [S̃]−1
0 (τ,0) = Tr[[S̃]−1(τ,0)γ0] in imaginary

time in the chiral limit for T = 3Tc, with several values of Nσ and Nτ , which are constructed
from the same quark correlators analyzed in the previous sections [3, 4]. Errorbars are estimated
by the jackknife analysis. In the figure, we also show the values of [S̃]−1

0 (τ ,0) corresponding
to the spectral function estimated by the two-pole ansatz Eq. (2.6) by the thin-solid lines: The
spectrum in the chiral limit, ρ(ω,0)= Z(δ (ω−mT )+δ (ω+mT )), corresponds to Im[S(ω,0)]−1

0 =

ImTr[Σ(ω,0)γ0] = m2
T/(T Z)δ (ω). One finds from the figure that [S]−1

0 (τ,0) is consistent with the
prediction of the two-pole ansatz within statistics near τT = 0.5. On the other hand, [S̃]−1

0 (τ ,0)
shows a strong deviation from the constant near the source. Similar results are obtained for nonzero
m0 and p.

The fact that the values of [S̃]−1
0 (τ , p) coincide with the ones predicted by the pole ansatz

around τT = 0.5 would support (1) the validity of the pole ansatz for the quark spectrum, and (2)
the relevance of the evaluation of ImΣ(ω, p) with Eq. (4.2). The large deviation from the constant
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Figure 3: The quark self-energy in Euclidean space as a function of imaginary time τ for T/Tc = 3.

near the source would be attributed to the distortion effects; in fact, the deviation is more prominent
on the course lattice. The errorbars and the distortion effect with the present lattice data are too
large to constrain the form of the spectral function with Eq. (4.2). Much finer lattice and higher
statistics are needed to proceed the analysis of the self-energy with Eq. (4.2) further.

To summarize, in this report we analyzed the spectral properties of quarks on the quenched
lattice with size N3

σ ×Nτ = 1283 ×16. We found that the spatial volume dependence of the quark
thermal mass defined by the pole ansatz tends to converge on this volume. The dispersion relations
of the normal and plasmino modes are investigated within the two-pole ansatz. The result indicates
the existence of a minimum of the plasmino dispersion at nonzero momentum. We also introduced
attempts to analyze the quark self-energy.

This proceedings is based on the collabolation done with O. Kaczmarek, F. Karsch, W. Soeld-
ner, M. Asakawa, and S. Takotani. Numerical simulations of this study have been performed on
the BlueGene/L at the New York Center for Computational Sciences (NYCCS).

References

[1] M. Le Bellac, Thermal Field Theory (Cambridge University Press, Cambridge, England 1996).

[2] R. J. Fries, B. Muller, C. Nonaka and S. A. Bass, Phys. Rev. C 68, 044902 (2003)
[arXiv:nucl-th/0306027].

[3] F. Karsch and M. Kitazawa, Phys. Lett. B 658, 45 (2007) [arXiv:0708.0299 [hep-lat]]; Phys. Rev. D
80, 056001 (2009) [arXiv:0906.3941 [hep-lat]].

[4] O. Kaczmarek, F. Karsch, M. Kitazawa, and W. Soeldner, in preparation.

[5] G. Baym, J. P. Blaizot and B. Svetitsky, Phys. Rev. D 46, 4043 (1992).

[6] M. Kitazawa, T. Kunihiro and Y. Nemoto, Phys. Lett. B 633, 269 (2006) [arXiv:hep-ph/0510167];
Prog. Theor. Phys. 117, 103 (2007) [arXiv:hep-ph/0609164]; M. Kitazawa, T. Kunihiro, K. Mitsutani
and Y. Nemoto, Phys. Rev. D 77, 045034 (2008) [arXiv:0710.5809 [hep-ph]].

7


