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The curvature which characterizes the QCD phase transition at finite temperature and small
values of the chemical potential is accessible to lattice simulations. The results for this quantity
which have been obtained by several different lattice simulation methods differ due to differ-
ent numbers of flavors, different pion masses and different sizes of the simulation volume. In
order to reconcile these results, it is important to investigate finite-volume effects on the curvature.

We investigate the curvature of the chiral phase transition line at finite temperature and chemical
potential in a finite volume. We use a phenomenological model for chiral symmetry breaking
and apply non-perturbative functional renormalization group methods which account for critical
long-range fluctuations at the phase transition.

We find an intermediate volume region in which the curvature of the phase transition line is ac-
tually reduced relative to its infinite-volume value, provided periodic spatial boundary conditions
are chosen for the quark fields. Size and location of this region depend on the value of the pion
mass. Such an effect could account for differences in the curvature between lattice simulations in
differently sized volumes and from functional methods in the infinite volume limit. We discuss
implications of our results for the QCD phase diagram.
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1. Introduction

There is considerable interest in determining the behavior of the QCD phase transition at finite
temperature and chemical potential [1, 2, 3, 4, 5, 6], see also [7] in these proceedings. Due to the
complex phase of the fermion determinant, QCD at finite chemical potential cannot be simulated
with standard Monte-Carlo methods on the lattice, but needs more sophisticated approaches, such
as a Taylor-expansion in the chemical potential [2, 6] or simulation at imaginary chemical potential
and analytic continuation [3, 4, 5].

For small values of the chemical potential, the shape of the QCD phase transition line can
be characterized by its curvature, which is accessible to the different simulation methods, as well
as functional methods for QCD [8, 9] and for models, see e.g [10, 11, 12, 13, 14, 15, 16, 17, 18,
19]. The curvature appears as the first expansion coefficient of the phase transition temperature,
considered as a function of the quark chemical potential µ .

Due to calculations with different values of the pion mass and different numbers of flavors, the
results for the curvature differ considerably between the different approaches [5, 6]. An additional
consideration are also the different sizes of the simulation volumes which may also affect the
behavior of the transition. It is these effects that we wish to investigate in the present work.

When we put a system with fermions into a finite box, due to the anti-commutation relations
the boundary conditions in the Euclidean time direction are required to be anti-periodic. In the spa-
tial directions, however, we have a choice between periodic and anti-periodic boundary conditions.
In many lattice QCD simulations, periodic boundary conditions are chosen in order to minimize
finite-volume effects. In a model calculation, we have indeed found that that this choice minimizes
finite-volume effects [20].

In a small volume, the choice of boundary conditions can strongly influence the behavior of
the system. The choice of boundary conditions affects the behavior of the pion mass in finite
volume [20] as well as the chiral phase transition temperature [21]. For periodic spatial boundary
conditions, the presence of a quark zero-momentum mode leads to an enhancement of the chiral
condensate. In the limit of very small volume, the chiral condensate vanishes and chiral symmetry
is restored, regardless of the boundary conditions.

In the framework of a model for chiral symmetry breaking, it follows from this observation that
the chiral phase transition line at finite chemical potential ought to be affected by a finite volume:
The presence of a chiral condensate leads to a finite mass for the constituent quarks in such a
model. An enhancement of the chiral condensate translates directly into an increased constituent
quark mass. More massive quarks then require a larger energy for their creation and a larger quark
chemical potential is necessary to increase the quark density, compared to a situation with light
constituent quarks. We expect that the system becomes therefore less sensitive to a change in the
chemical potential, and consequently the phase transition line becomes flatter and the curvature
decreases, in some intermediate volume region where this effect is present.

We have investigated this hypothesis in the framework of a chiral model for values of the pion
mass and of the volume that are relevant for current lattice simulations. We use a non-perturbative
functional renormalization group method to correctly include Goldstone mode effects and critical
fluctuations.
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2. Model and Method

We use for our investigation the quark-meson model, a model for chiral symmetry breaking
without any gluonic degrees of freedom, with two flavors of quarks. At an ultraviolet (UV) scale
Λ, the model in Euclidean space-time is defined by the bare action

ΓΛ[q̄,q,φ ] =
∫

d4x
{

q̄(∂/+h(σ + i~τ ·~πγ5))q+
1
2
(∂µφ)2 +UΛ(φ 2)− cσ

}
, (2.1)

where the four meson fields are parameterized as φ T = (σ ,~π). The meson potential with O(4)
symmetry is given by

UΛ(φ 2) =
1
2

m2
Λφ

2 +
1
4

λΛ(φ 2)2 , (2.2)

and thus characterized by the values of the two couplings mΛ and λΛ at the UV scale. Explicit
symmetry breaking due to a finite current quark mass mc is implemented via the term linear in σ

with coupling constant c Spontaneous breaking of the chiral flavor symmetry is indicated by a finite
expectation value for the first component of the meson field, 〈σ〉 6= 0.

In order to investigate the behavior of the phase transition in this model in a finite volume,
it is essential to take the critical long-range fluctuations into account. We employ a functional
Renormalization Group (RG) method for this purpose, using an approach due to Wetterich [22].
The scale-dependent effective action Γk for Λ ≥ k ≥ 0 satisfies the RG flow equation

k∂kΓk =
1
2

STr
{[

Γ
(2)
k +Rk

]−1
(k∂kRk)

}
, (2.3)

where k is a sliding cutoff scale, and Rk represents an infrared cutoff function, subject to certain
constraints [22]. Here we use a smooth cutoff which can be directly related to an optimized regula-
tor in the infinite-volume limit [23, 24]. By solving the flow equation for the effective action in the
above ansatz, we obtain in the limit k → 0 the full effective action, including the effects of long-
range fluctuations. The method can be adapted to a finite Euclidean space-time volume L3× 1/T
[20, 21, 25, 26] by considering sums over discrete momentum modes instead of the continuous
momentum integrations of the infinite-volume case. We solve the RG flow equation numerically
by using an expansion of the local potential around its minimum; any additional momentum de-
pendence of the couplings is neglected.

3. Results

We calculate the phase transition line at finite chemical potential and temperature for a variety
of different values for the vacuum pion mass m(0)

π and different values for the box size L, including
the limiting case L→ ∞. For the chiral phase transition, characterized by the behavior of the chiral
condensate, we define the curvature κ according to

Tχ(L,m(0)
π ,µ)

Tχ(L,m(0)
π ,0)

= 1−κ

(
µ

πTχ(L,m(0)
π ,0)

)2

+ . . . , (3.1)

3



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
1
9
3

Curvature of the QCD phase transition line in a finite volume Bertram Klein

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 2  2.5  3  3.5  4  4.5  5
L [fm]

m (0)  = 100 MeV 
     

-0.1

-0.05

 0

 0.05

 0.1

 2  2.5  3  3.5  4  4.5  5
L [fm]

m (0)  = 150 MeV

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 2  2.5  3  3.5  4  4.5  5
L [fm]

m (0)  = 200 MeV

Figure 1: Relative change ∆κ of the curvature in a finite volume of box size L compared to infinite volume
for pion masses of m(0)

π = 100 MeV (top) m(0)
π = 150 MeV (middle) and m(0)

π = 200 MeV (bottom). Lines are
meant to guide the eye. Results are obtained for periodic quark boundary conditions in the spatial direction.
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L→∞

Lc ! L <∞

L < Lc

µ

T

Figure 2: Schematic figure of the QCD phase diagram for finite chemical potential for different volume
sizes L at a given pion mass mπ . The solid lines symbolize the chiral crossover transition; the solid dot
indicates the critical endpoint of a first-order line in the chiral phase diagram, as obtained in a study of
the quark-meson model [10]. In intermediate volume ranges, above a specific volume size Lc, the phase
transition line is flatter than in infinite volume. For very small volumes, the curvature increases dramatically.
The value of Lc depends on the pion mass.

where Tχ(L,m(0)
π ,µ) is the chiral phase transition temperature. From the behavior of the crossover

line, we extract the value of the curvature κ for different volume sizes. In order to facilitate an
easier comparison of the results, we introduce a relative shift for the curvature in finite volume

∆κ(L,m(0)
π ) =

κ(L,m(0)
π )−κ(∞,m(0)

π )

κ(∞,m(0)
π )

. (3.2)

The result for three exemplary values of the pion mass is shown in Fig. 1.
We find that the curvature decreases in intermediate volume ranges, and only increases due to

chiral symmetry restoration from finite-volume effects in very small volumes. In our model, for
realistic values of the pion mass ≈ 150 MeV, the decrease is as much as 10%, but quickly becomes
much smaller with increasing pion mass. The effects is specific to our choice of periodic quark
boundary conditions. It is consistent with our expectation from the behavior of both the chiral
condensate and the constituent quark mass in the model: due to the intermediate increase in the
constituent quark mass, the system becomes less sensitive to an increase in the chemical potential,
the phase transition line becomes flatter and the curvature decreases.

4. Conclusions

We have studied the effect of a finite volume on the chiral phase transition line in QCD at
finite temperature and chemical potential. We used the quark-meson model, a model for chiral
symmetry breaking that does not include gluonic and confinement effects. In order to take long-
range fluctuations into account, which are of particular importance for studying the chiral phase
transition, we have used a functional non-perturbative renormalization group method.

For the choice of periodic spatial boundary conditions for the quark fields, we find that there
are qualitatively clear effects on the curvature of the chiral phase transition line. In intermediate
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volume ranges – depending on the exact values of the pion mass – the phase transition line tends to
flatten. Only for very small volumes, in which chiral symmetry is eventually restored, we do find
an increase in the curvature. This behavior is consistent with our expectations from investigations
of the volume dependence of the pion mass and the chiral condensate [20]. The qualitative effect
of this behavior on the phase diagram is sketched in Fig. 2.

These observations have implications for the determination of the QCD phase diagram from
lattice simulations as well. In general finite-volume effects will be stronger in the chiral model
calculation, in particular in the absence of confinement, than in full QCD. In consequence, we
do not expect to describe the finite-volume effects in QCD quantitatively. A more quantitative
description could be achieved by including confinement effects via an effective potential for the
Polyakov loop in finite volume.

However, the finite-volume effects for the pion mass, which underlie our results for the phase
boundary, have also been observed in quenched [27] and in full [28] lattice QCD calculations and
in a QCD calculation using Dyson-Schwinger equations [29]. We therefore expect that such finite-
volume effects are indeed present in lattice QCD simulations at finite chemical potential and may
effect the shape of the phase diagram obtained from such simulations.
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