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Transport coefficients of causal dissipative relativistic fluid dynamics (CDR) are studied in

quenched lattice simulations. CDR describes the behavior of relativistic non-Newtonian fluids

in which the relaxation time appears as a new transport coefficient besides the shear and bulk

viscosities. It was recently shown that these coefficients can be given by the temporal-correlation

functions of the energy-momentum tensors as in the case of the Green-Kubo-Nakano formula.

By using the new formula in CDR, we study the transport coefficients with lattice simulations in

pure SU(3) gauge theory. After defining the energy-momentum tensor on the lattice, we extract

a ratio of the shear viscosity to the relaxation time which is given only in terms of the static cor-

relation functions. The simulations are performed on243×4–16 lattices withβLAT = 6.0, which

corresponds to the temperature range of0.5 <∼ T/Tc <∼ 1.8, whereTc is the critical temperature.
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1. Introduction

Relativistic fluid dynamics is an important model to understand various collective phenom-
ena in astrophysics and heavy-ion collisions, although its theoretical foundation has not yet been
established [1]. The relativistic Navier-Stokes theory is, for example, acausal and unstable and
inadequate as the theory of relativistic fluids. The reason is that the irreversible currents (the shear
stress tensorπµν , the bulk viscous pressureΠ etc.) are linearly proportional to the thermody-
namic forces (the shear tensorσ µν , the expansion scalarθ etc.), with the proportionality constant
named the shear viscosity coefficientη , the bulk viscosity coefficientζ etc. Thus, the forces have
an instantaneous influence on the currents, which obviously violates causality and leads to insta-
bilities. These problems are solved by, for example, introducing retardation into the definitions
of the irreversible currents, leading to equations of motion for these currents which thus become
independent dynamical variables. The retardation effect is characterized by the relaxation time.
Theories of this type are called causal dissipative relativistic fluid dynamics (CDR). In CDR, the
irreversible currents and the thermodynamic forces are no longer in a simple linear relation, and
such fluids are callednon-Newtonian. As a consequence, the transport coefficients for CDR can-
not be computed with methods commonly used forNewtonian(Navier-Stokes) fluids, such as the
Green-Kubo-Nakano (GKN) formula.

Recently, a new microscopic formula to calculate the transport coefficients of CDR from time-
correlation functions was proposed [2, 3]. This formula reproduces the ordinary results when it is
applied to the classical Navier-Stokes theory and the diffusion equation. The consistency between
this new formula and the results obtained from the Boltzmann equation was confirmed in Ref.
[4, 5]. Since this formula is derived from quantum field theory, it will be applicable even to dense
fluids, differently from the calculations based on the Boltzmann equation.

The purpose of the present study is to calculate the transport coefficients of CDR with lat-
tice QCD simulations by using the new formula. The calculations of the transport coefficients,
in general, contain temporal-correlation functions which are very difficult to estimate in lattice
simulations [6, 7]. Thus, as a first attempt, we focus on a ratio between the shear viscosity and
the corresponding relaxation time,η/τπ , which is given only by static correlation functions. After
defining the correlation functions between the energy-momentum tensor on the lattice, we calculate
the ratio in quenched lattice simulations on243×4–16 lattices withβLAT = 6.0, which corresponds
to the temperature range0.5 <∼ T/Tc <∼ 1.8 whereTc is the critical temperature.

This report is organized as follows: in section2, we introduce formulations of CDR and show
that the ratio of transport coefficients can be expressed in terms of static correlation functions
between the energy-momentum tensors. In section3, the energy-momentum tensor is defined on
the lattice by using a clover-shaped combination of gauge links. Results of lattice simulations are
shown in section4, and the summary is given in section5.

2. Causal dissipative relativistic fluid dynamics

We first choose gross variables which are necessary to extract the macroscopic motion of
many-body systems. If the chosen variables are not enough, the derived fluid dynamics will show
unphysical behaviors, such as instability and the divergent transport coefficients.
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For ideal fluid, the energy-momentum tensorTµν is a function only of the energy densityε and
the fluid velocityuµ , which is normalized asuµuµ = 1. Then, by applying a Lorentz transformation
and using the definition of the energy density and pressureP, we obtainTµν = (ε +P)uµuν−gµνP.
Note thatP is calculated by the equation of state. SinceTµν is conserved, we have

∂µTµν = 0. (2.1)

This is the relativistic Euler equation.
For dissipative fluid,Tµν cannot be expressed only byε anduµ . We represent this additional

component by another second rank tensorΠµν . The most generalTµν is, then, given byTµν =
(ε +P)uµuν −gµνP+Πµν . Conventionally,Πµν is expressed using the trace partΠ and traceless
partπµν asΠµν = πµν − (gµν −uµuν)Π. Finally Tµν is expressed as

Tµν = (ε +P+Π)uµuν −gµν(P+Π)+πµν , (2.2)

andΠ andπµν are the bulk viscous pressure and the shear stress tensor, respectively, satisfying the
orthogonality conditionuµπµν = 0. In the traditional Landau-Lifshitz theory [8], the viscous terms
are induced instantaneously by the corresponding thermodynamic force:

Π =−ζ θ , πµν = 2ησ µν , (2.3)

whereζ andη are the bulk and shear viscosities, respectively. The thermodynamic forcesθ and
σ µν are defined by

θ = ∂µuµ , σ µν =
1
2

(
∂ µuν +∂ νuµ − 2

3
(gµν −uµuν)θ

)
≡ ∆µνλδ ∂λ uδ . (2.4)

When we use these definitions of the viscous terms, we obtain the relativistic Navier-Stokes equa-
tion. Because of the instantaneous production of the viscous terms, this equation contains sound
propagations with infinite speed.

In order to solve this problem, the retardation effect is taken into account by introducing relax-
ation timesτπ for the shear stress tensor andτΠ for the bulk viscous pressure, respectively. Thus
the viscous terms satisfying causality are given by

τΠuµ∂µΠ+ τΠΠθ +Π =−ζθ , τπ∆µνλδ uα∂απλδ + τππµνθ +πµν = 2ησ µν , (2.5)

whereτΠ andτπ are the relaxation times ofΠ andπµν , respectively. Here the projection operator
∆µνλδ is necessary to satisfy the orthogonality relation. These are the equations of CDR. One can
easily check that the Navier-Stokes theory is reproduced in the vanishing relaxation time limit.
The second terms on the l.h.s. come from the (de)compression of fluid cells which is important to
implement stable numerical calculations with ultra-relativistic initial conditions [9].

In fluid dynamics, transport coefficients are inputs which should be calculated from the un-
derlying microscopic dynamics. As was discussed in the introduction, we cannot apply the GKN
formula to CDR. The new formula is derived by using the projection operator method [2, 4]. The
results are summarized as

η
β (ε +P)

=
ηGKN

β 2
∫

d3x(T̂0x(x), T̂0x(0))
,

τπ

β
=

ηGKN

β 2
∫

d3x(T̂yx(x), T̂yx(0))
, (2.6)

ζ
β (ε +P)

=
ζGKN

β 2
∫

d3x(T̂0x(x), T̂0x(0))
,

τΠ

β
=

ζGKN

β 2
∫

d3x(δΠ̂(x),δΠ̂(0))
, (2.7)
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whereˆ denotes operator, and we defineΠ̂ ≡ ∑3
i=1 T̂ ii/3− c2

sT̂00 andδ Â≡ Â−Tr[ρeqÂ] with the
equilibrium density matrixρeq. The inner product is defined by Kubo’s canonical correlation,

(A,B) =
∫ β

0

dλ
β

Tr[ρeqA(−iλ )B]. (2.8)

HereηGKN andζGKN are the shear and bulk viscosities of Newtonian fluids which are calculated
using the GKN formula (or more precisely, using the Zubarev method). These quantities are given
by the temporal (dynamical) correlation functions.

One can see that the new transport coefficients are still calculated from the GKN formula with
the normalization factors, which are, on the other hand, given by the static correlation functions.
Thus, for example, the ratio of the shear viscosity and corresponding relaxation time is calculated
only from the static correlation functions,

η
τπ(ε +P)

=
∫

d3x(T̂yx(x), T̂yx(0))∫
d3x(T̂0x(x), T̂0x(0))

. (2.9)

In the leading order of the weakly interacting bose gas, the above ratio becomesη
τπ (ε+P) = P

ε+P

which becomes zero (1
4) at T = 0 (T → ∞) for massive bosons. In the following, we focus on this

ratio and calculate it in quenched lattice simulations.

3. Energy-momentum tensor on the lattice

Let us consider the gluonic matter at finiteT, and define the energy-momentum tensor for the
SU(3) gauge theory in Euclidean space-time as,

Tµν(x) = 2tr
[
Fµα(x)Fνα(x)

]− 1
2

δµν

(
1+

β (g)
2g

)
tr

[
Fρσ (x)Fρσ (x)

]
, (3.1)

where the trace is taken over color indices, andβ (g) is a beta function on the lattice [10]. In the
standard approach, the field strength tensor squared on the lattice (without the summation over
Lorentz indices) is defined from the Hermitian part of the plaquette as

a4tr
[
Fµν(x)Fµν(x)

]
+O(a5) = βLAT

[
1− 1

3
RetrUµν(x)

]
, (3.2)

whereβLAT = 6/g2 is a lattice gauge coupling. This is utilized to define e.g. the standard gauge
action. However this does not tell us anything about the off-diagonal part of the energy-momentum
tensor,Tµν(µ 6= ν). Therefore, the following equality (valid only in the continuum theory with
full O(3) rotational symmetry) has been employed to calculate the correlations of the energy-
momentum tensor:

〈
Ti j (x)Ti j (y)

〉
=

1
2

[〈Tii (x)Tii (y)〉−
〈
Tii (x)Tj j (y)

〉]
, (i, j = 1,2,3). (3.3)

It was however realized recently that this relation receives large errors due to lattice discretization
[11]. Moreover, it does not give us a clue to calculate the correlation ofTi4 (the denominator of the
ratio in Eq. (2.9)) at finiteT.
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Alternative way to define the field strength would be to take the anti-Hermitian part of the
plaquette,

a4tr
[
Fµν(x)Fρσ (x)

]
+O(a5)≡−βLAT

24
tr

([
Qµν(x)−Q†

µν(x)
][

Qρσ (x)−Q†
ρσ (x)

])
, (3.4)

which can be used both for the first and second terms of the right hand side of Eq.(3.1). Here we
adopt a clover-shaped combination of the plaquette [12]

Qµν(x)≡ 1
4

[
Uµν(x)+Uν−µ(x)+U−µ−ν(x)+U−νµ(x)

]
, (3.5)

to respect the space-time symmetry. This definition naturally leads to〈Tµν〉= 0 for µ 6= ν . In our
simulation, we use the energy-momentum tensor obtained from Eq.(3.4).

In the Euclidean space-time, the Kubo’s canonical correlation for the energy-momentum ten-
sors appearing in Eq. (2.9) becomes a susceptibility

Gµν(T) =
T2

V

〈(∫
d3x

∫ 1/T

0
dτTµν(x,τ)

)2
〉

T

, (3.6)

where we have used the translation invariance both in spatial and temporal directions, and〈· · ·〉T de-
notes the thermal average at temperatureT. With T = 1/(aNt), V = (aNs)3 and

∫
d3x

∫
dτ → a4 ∑x

on the lattice, we can rewrite the static susceptibilityGµν in the lattice unit with zero temperature
subtraction as

Gµν(T) =

[〈
1

N3
s N2

t

(
∑
x

Tµν(x)
)2

〉

T

−
〈

1

N3
s N2

t0

(
∑
x

Tµν(x)
)2

〉

T=0

]
, (3.7)

whereNt0 means the temporal lattice size atT = 0.

4. Results of lattice simulations

We perform quenched lattice simulations employing a standard plaquette gauge action on a
isotropic lattice of243×Nt with Nt = 4−16. The lattice coupling is taken to beβLAT = 6.0, which
corresponds toa= 0.093fm with the Sommer scaler0 = 0.5 fm [13]. The range ofNt corresponds
to T/Tc∼ 0.5–1.8, where the critical temperature is located betweenNt = 7 andNt = 8. The zero-
temperature subtraction is performed withNt = 24. We generate pure gauge configurations by
the pseudo-heat-bath algorithm and measure correlations using 1000–5000 configurations at every
1000 trajectories after thermalization. Statistical errors are estimated by the jackknife analysis.

In order to see the behavior of the energy-momentum tensor constructed from Eq. (3.4), let us
first show results of the trace anomaly,

ε−3P =

[〈
1

N3
s Nt

∑
x

∑
µ

Tµµ(x)

〉

T=0

−
〈

1
N3

s Nt0
∑
x

∑
µ

Tµµ(x)

〉

T

]
. (4.1)

Figure1(left) shows temperature dependence of the trace anomaly together with the energy density
and pressure calculated by theT-integral method [13]. Typical enhancement of(ε−3P)/T4 around

5



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
2
0
1

Transport coefficients of causal dissipative relativistic hydrodynamics in quenched lattice simulations
Yu Maezawa

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0.8  1  1.2  1.4  1.6  1.8  2

T / Tc

(ε - 3p)/ T
4

3p / T
4

ε / T
4

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0  0.5  1  1.5  2  2.5

T / Tc

(ε - 3P) / T4

Gxy(T) / Gx4(T)

Figure 1: Results of the trace anomaly, energy density and pressure (left) and the ratio of the susceptibilities
Gxy(T)/Gx4(T) (right) as a function of temperature.

Tc, and the rapid (slow) increase of the energy density (pressure) can be seen. The off-diagonal parts
of the energy-momentum tensor are found to be zero within the statistical error,〈Tµν〉T ' 0, (µ 6=
ν).

We define the averaged static susceptibilitiesGxy andGx4 from Eq.(3.7) as

Gxy(T)≡ 1
3

(G12+G13+G23) , Gx4(T)≡ 1
3

(G14+G24+G34) . (4.2)

From the simulation, we found that bothGxy andGx4 increase monotonically with temperature with
similar values, so that the ratioGxy/Gx4 shown in Fig.1 (right) corresponding toη/τπ(ε + P) is
almost unity over the range of temperatures we have explored,0.5 <∼ T/Tc <∼ 1.8. This behavior is
in contrast to that expected from the weakly interacting bose gas mentioned at the end of sec.2, and
is worth to be studied further.

5. Summary

We examined transport coefficients of causal dissipative relativistic fluid dynamics (CDR) in
quenched lattice simulations. Based on the microscopic formulae proposed in Refs. [2, 3], a ratio
between the shear viscosity and the corresponding relaxation time,η/(τπ(ε +P)), was computed
from the static correlation functions of the energy-momentum tensor. We calculated these static
correlation functions in quenched lattice simulations on243×4–16 lattices withβLAT = 6.0, which
correspond to the temperature range of0.5<∼ T/Tc <∼ 1.8. In this temperature region, the ratio stays
constant and close to unity.
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