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We present a new method to calculate meson spectral functions (SPFs) on the lattice based on
a variational method. Because, on a finite volume lattice, the meson SPFs have discrete spectra
only, a suitable way to extract such discrete signals is needed. Using a variational method, we
can calculate several discrete quantities such as the position and the area of spectral peaks for
low-lying states. Moreover data accuracy can be improved by increasing the number of basis
functions. In this report, we first confirm our method in the free quark case and show that our
method works well. Then, we apply the method to a quenched lattice QCD simulation and cal-
culate the charmonium SPFs for S and P-waves at zero temperature. Our results for the ground
state are well consistent with the position and the area of the lowest peaks of charmonium SPFs
calculated by the conventional maximum entropy method. For first excited states, the signals may
be reliablly extracted with our method because the charmonium mass converges to a value close
to the experimental one when the number of basis functions is increased. We also investigate the
SPFs for S-wave charmonia at below and above Tc. Our results suggest that J/ψ and ηc may
survive up to 1.4Tc
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1. Introduction

Spectral functions (SPFs) at finite temperature in quantum chromodynamics (QCD) play im-
portant role to investigate the behavior of mesons in medium. Actually, charmonium SPFs are
studied to understand the suppression of J/ψ production in heavy ion collision experiments such
as SPS [1] and RHIC [2], which is one of the most important signals for quark-gluon-plasma for-
mation [3]. Recently, it is known that not only J/ψ itself but also χc and ψ ′ contribute to total
yield of J/ψ [4], therefore we also need to understand the sequential J/ψ suppression [5] due to
the suppression of these charmonia.

On the lattice, the meson SPFs are extracted from Euclidean meson correlators conventionally
with the maximum entropy method (MEM) [6] which is based on the Bayesian probability theory.
According to these studies, S-wave charmonia such as J/ψ and ηc still survive up to 1.5Tc in both
quenched [7, 8, 9, 10] and 2-flavor QCD [11]. On the other hand, P-wave charmonia such as χc0

and χc1 are suggested to dissolve just above Tc [10, 11].
For the MEM analysis, however, it is difficult to find a porper default model which shares as

many properties as possible with the SPFs. Accordingly there is ambiguity due to the choice of
default model. Moreover, lattice QCD consists of only discrete spectra when spatial lattice extent is
finite. Therefore, it is important to check the conclusion drawn form MEM by other methods which
can directly extract such discrete signals instead of reproducing the continuous form of SPFs. In
this respect the variational method [12] is a suitable tool to investigate a few lowest (discrete) states
from Euclidean correlators.

In this study, we propose a new method to calculate the meson SPFs with the variational
method. With our method, we can determine only the value of the SPFs at discrete points corre-
sponding to some low-lying states. When a state dissolves, corresponding value of the SPFs should
be quite modified and may become small compared with that below Tc. So our goal is to investigate
the temperature dependence of the values of the SPFs and find such a modification. In the follow-
ing section, we show the detail of our method and check it for free quarks. Finally, we apply our
method to the calculation of the charmonium SPFs at zero and finite temperatures in the quenched
QCD.

2. Meson SPFs with the variational method

A meson correlator in the Euclidean space-time is defined by

CΓ(t)≡ ∑⃗
x
⟨OΓ(⃗x, t)O

†
Γ(⃗0,0)⟩, (2.1)

where OΓ(⃗x, t) ≡ q̄(⃗x, t)Γq(⃗x, t) is a meson operator and Γ = γ5,γi,1,γ5γi (i = 1,2,3) correspond
to pseudoscalar (Ps), vector (Ve), scalar (Sc) and axial-vector (Av) channels, respectively. For Ve
and Av channels, we average the meson correlators over i = 1,2,3.

Then meson SPFs ρ̃Γ(ω) are given by a relation

CΓ(t) =
∫ ∞

0
dω ρ̃Γ(ω)

cosh[ω(t −Nt/2)]
sinh[ωNt/2]

, (2.2)
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where Nt is the temporal lattice size. Since we consider a finite volume system where the meson
SPFs have only discrete spectra, we can write the meson SPF as ρ̃Γ(ω) = ∑k ρΓ(mk)δ (ω −mk).
Therefore (2.2) is rewritten as

CΓ(t) = ∑
k

ρΓ(mk)
cosh[mk(t −Nt/2)]

sinh[mkNt/2]
. (2.3)

In order to calculate ρΓ(mk), we apply the variational method [12] as follows. First, we define
an n×n meson correlator matrix by

CΓ(t)≡

[
CΓ(t)i j = ∑⃗

x
⟨OΓ(⃗x, t)i O

†
Γ(⃗0,0) j⟩

]
, i, j = 1, · · · ,n, (2.4)

using smeared meson operators with the Gaussian smearing function

OΓ(⃗x, t)i ≡ ∑⃗
y,⃗z

ωi(⃗y)ωi(⃗z) q̄(⃗x+ y⃗, t)Γq(⃗x+ z⃗, t), ωi(⃗x)≡ e−Ai |⃗x|2 , (2.5)

where Ai is a smearing parameter. Here we choose ω1(⃗x) = δ (⃗x), namely OΓ(⃗x, t)1 is a point
operator. By solving a generalized eigenvalue problem

CΓ(t)v(k) = λk(t; t0)CΓ(t0)v(k), k = 1,2, · · ·n, (2.6)

effective masses meff
k (t; t0) are defined by the eigenvalues as

λk(t; t0) =
cosh[meff

k (t; t0)(t −Nt/2)]
cosh[meff

k (t; t0)(t0 −Nt/2)]
. (2.7)

Denoting Λ = diag{λ1, · · · ,λn} and V = [v(1) · · ·v(n)], (2.6) is rewritten as CΓ(t) = CΓ(t0)VΛV−1.
Then we can write the (1,1) element of CΓ(t) as

CΓ(t)11 = ∑
k
(CΓ(t0)V)1k (V

−1)k1
sinh[meff

k (t; t0)Nt/2]
cosh[meff

k (t; t0)(t0 −Nt/2)]
cosh[meff

k (t; t0)(t −Nt/2)]
sinh[meff

k (t; t0)Nt/2]
, (2.8)

where CΓ(t)11 is point source - point sink component which equals to the meson correlator defined
by (2.1). Comparing (2.3) with (2.8), we find

ρΓ(meff
k (t; t0)) = (CΓ(t0)V)1k (V

−1)k1
sinh[meff

k (t; t0)Nt/2]
cosh[meff

k (t; t0)(t0 −Nt/2)]
. (2.9)

Here we note that we also apply the mid-point subtraction technique [13] in order to separate out
the zero mode contribution from the meson correlators as follows:

CΓ(t) → CΓ(t)−CΓ(Nt/2).

Accordingly, cosh of the kernels in (2.3), (2.7), (2.8) and (2.9) is modified as

cosh [m(t −Nt/2)] → cosh [m(t −Nt/2)]−1.
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Figure 1: The meson SPF at seven lowest-lying states for Ve (left) and Av (right) channels obtained on a
203 ×128 lattice in the free Wilson quark case. Circle symbols are the results of the variational method for
n = 7 and the analytic solutions are also shown by the asterisks.

3. Test in free quark case

First, in order to confirm our method, we consider the free Wilson quark case.
We study on an anisotropic lattice with the anisotropy ξ ≡ as/at = 4 where as and at are the

spacial and temporal lattice spacings, respectively. We choose m0as ≈ 0.7501 as the quark mass so
that the ground state meson masses studied in the next section are approximately reproduced. We
also choose r = 1 as the Wilson parameter.

For the smeared meson operators defined in (2.5), n = 7 smearing parameters are chosen as
A1 = ∞, A2 = 0.25, A3 = 0.20, A4 = 0.15, A5 = 0.10, A6 = 0.05 and A7 = 0.02, where A1 = ∞
corresponds to the point operator. Then we construct n×n meson correlator matrices on 203 ×128
lattice and calculate mk and ρΓ(mk) with the variational method for Ps, Ve, Sc and Av channels.
Since we do not have so much space, we show the results only for Ve and Av channels in Figure
1. We choose t0 = 51 and t = 63 where t0 and t are as large as possible keeping the signals stable.
The analytic solutions are also shown.

This figure shows that the results are almost consistent with the analytic solutions up to the
second excited state for each channel. Here it is noted that it looks more difficult to extract higher
states’ signals for P-wave (Av) than S-wave (Ve). The results for Ps and Sc channels are almost the
same as those for Ve and Av channels, respectively. Therefore it is shown that we can calculate the
meson SPFs at some low-lying states with the variational method using several basis operators.

4. Charmonium SPFs

Next, we apply our method to the quenched QCD and calculate the charmonium SPFs.
Our simulations are preformed on 203×Nt anisotropic lattices with the renormalized anisotropy

ξ = 4. Adopting the standard plaquette gauge action, the gauge coupling and the bare gauge
anisotropy parameter are chosen β = 6.10 and γG = 3.2108. Then the lattice spacing as = 0.0970(5)
fm (a−1

s = 2.030(13) GeV) is determined by the Sommer scale r0 = 0.5 fm [14], which means that
our spacial volume is about (2 fm)3. For the temporal lattice size, we adopt Nt = 160 at zero
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Figure 2: Charmonium SPF at the ground and the first excited states for Ve (left) and Av (right) channels
at zero temperature obtained on the 203 × 160 lattice. Cross, square, circle, triangle and reverse triangle
symbols indicate the data by the variational method with n = 3, 4, 5, 6, 7, respectively, and plus symbols
indicate the MEM data. The vertical dashed lines indicate the range of experimental masses for J/ψ(1S)
and ψ(2S) mesons for Ve channel and χc1(1P) meson for Av channel [17].

temperature and Nt = 32, 26, 20 at about 0.88Tc, 1.1Tc, 1.4Tc, respectively, where the critical tem-
perature Tc determined by peak position of the Polyakov loop susceptibility corresponds to Nt ≈ 28.
After 20,000 pseudo-heat-bath sweeps for thermalization, separated by 500 sweeps, 299 and 800
configurations are generated at zero and finite temperature, respectively. For valence quarks, we
adopt O(a)-improved Wilson quark action with the bare quark anisotropy parameter γF = 4.94 and
tree-level tadpole improved clover coefficients cE = 3.164 and cB = 1.911. The definition of the
actions and their parameters are almost the same as those of Ref. [15], however we choose different
Wilson parameter r = 1 to suppress lattice artifacts in higher excited charmonia [16]. In order to
roughly reproduce the experimental value of J/ψ mass, κ = 0.10109 is chosen where this value of
κ corresponds to the charm quark mass on an isotropic lattice with a similar spatial lattice spacing.

First, we calculate mk and ρΓ(mk) for the ground and the first excited states for Ps, Ve, Sc
and Av channels at zero temperature with the variational method. We use the same smearing
parameters A1,A2, · · · ,An introduced in previous section and vary the number of basis operators as
n= 3, 4, 5, 6, 7. t0 = 5 is chosen as the reference point and the plateau is fitted with the range of t =
73−77 and t = 35−39 for the ground state and the first excited state of S-wave, respectively, and
t = 60−64 and t = 25−29 for the ground state and the first excited state of P-wave, respectively.
We have reasonable χ2/d.o.f which is from 0.1 to 5.0 in this fit analysis.

To compare our results with those given by the conventional method, we also calculate the
charmonium SPFs for the point operators with MEM and regard position and area of the each
peak as mk and ρΓ(mk), respectively. Our MEM analysis basically follows Ref. [6]. As the default
model function m(ω), we use a form m(ω) = mDMω2 where mMD = 4.2 for Ps and Sc channels and
mMD = 2.4 for Ve and Av channels, which are determined according to the asymptotic behavior of
the meson correlators in perturbation theory [6, 7]. The charmonium correlators at t = 1−60 and
t = 3−60 are used for S-wave and P-wave, respectively, since those near t = 0 are suffered from
lattice artifacts. Furthermore we check other basic parameters of MEM and confirm the results
are stable around our parameters. The peak positions are defined at the maxima of the SPF. To

5



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
2
0
9

An application of the variational analysis to calculate the meson spectral functions H. Ohno

calculate the area of peaks, we divide the SPFs into each peak at minima of the SPF when each
peak of the SPFs are not isolated.

Figure 2 shows the results for Ve and Av channels. The range for the experimental values of
charmonium masses [17] are also shown by the vertical dashed lines.

For the ground state of these channels, the data for the variational method for each n and that
for MEM are well consistent with each other and close to the experimental value. On the other
hand, the first excited state’s data are quite different from each other. However, for S-wave, the
data for the variational method are converged on a certain point close to the experimental value
as n increases. This means that, in our method, the quality of the signals for higher states can
be improved by increasing the number of basis operators. The results for Ps and Sc channels are
almost the same as those for Ve and Av channels, respectively.
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Figure 3: The temperature dependence of the effective mass (left) and corresponding value of the SPF
(right) for the ground state of Ve channel. The plus, cross, asterisk, square symbols indicate the data at
T = 0,0.88Tc, 1.1Tc, 1.4Tc, respectively.

Finally, we investigate the temperature dependence of the effective masses and corresponding
values of the SPFs for the ground state of S-wave charmonia with the variational method using
the same smearing parameters as those at zero temperature and choosing n = 7. Figure 3 shows
the results for Ve channel at t0 = 5 as a function of t up to 1.4Tc. The mass of the ground state
and corresponding value of the SPF can be approximately obtained by a constant fit of the plateau
region.

It seems that the effective mass has no clear temperature dependence. On the other hands,
there may be some difference between the value of the SPF below Tc and that above Tc, although
the difference is quite small. The result for Ps channel is almost the same as that for Ve channel.
We find no clear evidence for dissociation of J/ψ and ηc up to 1.4 Tc.

5. Conclusions

We proposed a new approach to calculate the meson SPFs using the variational method. To
test our method, we calculated the meson SPFs for Ps, Ve, Sc, and Av channels in the free quark
case. Using 7 basis operators defined by a Gaussian smearing function, we find that the results are
well consistent with the analytic solutions up to the second excited state.
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At zero temperature, we calculated the charmonium SPFs for S and P-wave up to the first
excited states varying the number of the basis operators. Comparing our results with those given
by MEM, we find that the data for the ground state is consistent with each other. On the other
hand, the data for the first excited state are discrepant with each other. However, the signals in our
method can be improved by increasing the number of basis operators.

At finite temperature, we investigated the temperature dependence of the effective masses and
corresponding values of the SPFs for the ground state of S-wave charmonia. We find no clear
evidences of dissociation for J/ψ and ηc mesons up to 1.4Tc.

This work is in part supported by Grants-in-Aid of the Japanese Ministry of Education, Cul-
ture, Sports, Science and Technology, (Nos. 20340047, 21340049, 22740168, 22840020) and by
the Grant-in-Aid for Scientific Research on Innovative Areas (No. 2004: 20105001, 20105003).
The simulations have been performed on a supercomputer NEC SX-8 at the Research Center for
Nuclear Physics (RCNP) at Osaka University.
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