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We show that for small values of the chemical potential thevature of the phase transition
line can be deduced from an analysis of scaling propertieth@fchiral condensate and its
susceptibilities. We make use of a recent analysis of thenetagequation of state in (2+1)-
flavor QCD where a connection between the QCD parametershendniversal scaling fields
could be established. The remaining dependence of the eddigenperature on the chemi-
cal potential can be fixed by an analysis of a mixed suscdiptibbbtained from a derivative
with respect to quark mass and chemical potential. We exttas dependence which de-
scribes the curvature of the phase transition line, at twoegof the cut-off,aT = 1/4 and
1/8. We find that cut-off effects are small for the curvatureapaeter and determine the tran-
sition line in the chiral limit to leading order in the lighugrk chemical potential. We obtain
Te(s)/Te(0) = 1— 0.0065666) s/ T)? + O(1d).
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Figure1l: The curvature of the transition line in th€,{g)-diagram for infinitely heavy quarks and — as the
result of this paper — in the chiral limit. For comparison wgashow the freeze-out data from heavy ion
experiments, together with a parameterization for thezi#emut line from Ell]. Units are normalized to the
transition temperature aig = 0 (To).

1. Introduction and Summary

Extending lattice QCD calculations to non-zero baryon-chemical potentiaquivalently,
to non-zero net baryon number density is known to be difficult in genéfalvever, important
information on the QCD phase diagram can be deduced for small values cii¢dmical potential
by using well established numerical techniques such as reweigfitingnfljte continuation[[2[]3]
or Taylor expansion[]4]] 5]. At non-zero values of the chemical poteatihase boundary in the
temperature and chemical potential parameter space of QCD is well defilydd the heavy quark
limit or for vanishing quark masses. In the former case the phase transittocdiresponds to the
first order deconfinement transition in the pure gauge theory. At infiiteeg of the quark mass
this transition is independent of the chemical potential and defines a stiaght theT-pu plane.
For a large range of quark mass values the transition line is not uniqubardaterizes a region
of (rapid) crossover in thermodynamic quantities and a pseudo-criticabtatope extracted from
these observables may differ somewhat, depending on the observahie tkad. In the chiral
limit, however, the transition line is again well defined. For sufficiently largansfe quark mass it
defines a line of second order phase transitions in the universality ¢ltsge dimensionaD(4)
symmetric spin model$][6].

In a recent work[[[7] we have shown that the curvature of the phassiticn line in the chiral
limit can be obtained from an analysis of the universal scaling propeftaeseartain mixed suscep-
tibility which is defined by the leading order Taylor expansion coefficierthefchiral condensate
with respect to the light quark chemical potential. Numerical calculationslbeee performed for
(2+1)-flavor QCD keeping the heavier strange quark mass close to gicphyalue and decreasing
the two degenerate light quark masses towards the massless limit. We will ma&kausecent
scaling analysig]7] 8] of the chiral order parameter performed with aroivegrstaggered fermion
action. This study showed that the chiral order parameter is well deddsipa universal scaling
function characteristic for a three dimensior@(N) universality class. As a result for the critical
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line in the chiral limit we find
T (ug)/T(0) = 1—0.0065666) (s /T)?+ &((1s/T)) (1.1)

This curvature is about a factor two larger than the reweighting resultinettan (2+1)-flavor
QCD [d]. It is however consistent with results obtained in calculations with inaayg chemical
potentials. In fact it lies in between the 2-flavp} [2] and 3-flaydr [9] simutatiperformed with
the standard staggered fermion formulation and also is consistent with reqdtted from (2+1)-
flavor simulations with imaginary chemical potential performed with the action alksedin this
study (p4-action)[[10]. The result is most relevant for comparison withettperimentally deter-
mined freeze-out curve as shown in Hiy. 1. The parameterization fouffdljrhas a curvature
that is about a factor 3-4 larger which suggests that (for sufficientyelsalues of the chemical
potential) the freeze-out line does not follow the critical line. In the followtiwg Sections we
briefly review the scaling analysis of the order parameter and the mixedikskty.

2. Magnetic equation of state

In general we can separate two kinds of contributions to the free edergjty, a partfs) that
will generate singularities in higher order derivatives of the partition tfioncand a regular part
(fr), we have

f(T7marnSa IJq,IJs) = fS(Tamyn]Sa Ilq,lls) + fr<T7m7rnSv NCIaIJS) . (21)

In addition to the temperatur€, light (m) and strangen(s) quark masses we also allow for a
dependence of the free energy density on the quark chemical poteieé® to the chiral phase
transition temperature at vanishing chemical potential the singulafpaifl give rise to universal
scaling properties of response functions. This has been exploitedliyaabasic universal features
of the QCD phase diagram close to criticalify][12]. Althoufgrdepends on many parameters of
the QCD Lagrangian, the universal behavior can be expressed inaéomly two relevant scaling
variablest andh, that control deviations from criticality gt,h) = (0,0). To leading order the
scaling variabldn depends only on parameters that break chiral symmetry in the light quadt,se
while t depends on all other couplings. In particutawill depend on the light quark chemical
potential whileh remains unaffected by this in leading order,

1/T-T, g 2
().
to< T thalT

_1m
~ homg’
whereT; is the phase transition temperature in the chiral limit &pdhy are non-universal scale
parameters (as&). While the combinatiogy = hé/B‘s/to is unique for a given theory, the values of
to andhg will change under rescaling of the order paramefer [8]. Just like thsitiamtemperature
T. alsoty andhg are cut-off dependent and will need to be extrapolated to the continuum limit.
The singular part of the free enerdy, is a homogeneous function of its arguments. This can
be used to rewrite it in terms of the scaling variabte t /h/F% as

(2.2)

fs(t,h) = h'*/0f(z,1) = ht* Y% 4y(2) . (2.3)
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wherep, 9 are critical exponents of the three dimensioBéN) universality class[[13].

The universal critical behavior of the order parameter. d f /dmy, is controlled by a scaling
function fg that arises from the singular part of the free energy density after takuhgrivative
with respect to the light quark mass,

M(t,h) = hY%fg(2). (2.4)

The scaling functiorfg(z) is well-known for theD(2) andO(4) universality classes through studies

of three dimensional spin models J14]. This so-called magnetic equationtef &a. {Z.4), has
been analyzed recently for (2+1)-flavor QCD using an improved stadgermion formulation
(p4-action) on lattices with temporal exteNt = 4,8 [f, [8] and light quark masses as small as
my /ms = 1/80, which corresponds to a pion mass that is about half its physical Valcsuld be
shown that the chiral order parameter can be mapped onto a uni@®acaling curve and the
scale parametets, hy, T, could be extracted. The scaling analysis has been performed for two
order parameters, that are multiplicatively renormalized by multiplying the atoradensate with

the strange quark mass, but differ in handling additive divergencesylin the quark mass

Mo = 2@
v = 3% (v - ) @25)

All resulting fit parameters from fits with and without a regular contributiom summarized in
Table[1. Note that foN; = 8 only fits including a regular contribution have been possible, since
the smallest available mass in this case has bgéms = 1/20.

3. Curvature of thecritical line

At leading order the light quark chemical potential only enters the redigegerature, as
introduced in Eq.[(2]2). Also at non-vanishing values of the quark crarpiatential the phase
transition point is located at= 0. The variation of the transition temperature with chemical poten-
tial therefore is parameterized in terms of the conskgnintroduced in Eq.[(2]2),

Tc(Tlclq) :l_Kq<I;q>2+ﬁ<<iQ>4> - (3.1)

To determine the chiral phase transition line inThe plane we thus need to determine the propor-
tionality constankq. This is, in fact, the only left over free parameter in universal scalingtfans
that needs to be determined.

The constankqy can be determined by analyzing the dependence of the chiral condensate
the light quark chemical potential. To extract information about the depeedef the scaling

1As we are working with staggered fermio@%2) is expected to be the relevant universality class at finite lattice
spacing. We find, however, that fits to t&¢4)-symmetric model work equally well.

2At finite value s of the cut-off these terms are, of course, finite and reajdwed as a specific contribution to the
regular part that will not alter the scaling properties for sufficiently swallies of the quark mass.
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NelM | to [ h [T(0)[MeV]]| 2
fit using the scaling term only

4 | Mp | 0.0037(2) | 0.0022(3) 194.5(4) | 6.8(5)
M | 0.0048(5) | 0.0048(2) 195.6(4) | 8.5(8)
fit using scaling and regular terms
4 | Mp | 0.00407(9) | 0.00295(22) 194.9(2) | 7.5(3)
M | 0.00401(9) | 0.00271(20), 194.8(2) | 7.2(3)
8 | Mp | 0.00271(21)] 0.00048(9)| 174.1(8) | 3.8(5)
M | 0.00302(22), 0.00059(10), 175.1(8) | 3.8(4)

Table 1: Scale parameters determined from the scaling fits on latbéeemporal extenN; = 4 and 8.
The last column givegy = h(l)/B‘S/to. We give the results for parameters entering the definitfoscaling
functions forMy, and the subtracted order paramditias defined in Eq. (2.5). Only the former has been
used in the analysis of the mixed susceptibilities. Noté tits including regular terms, give consistent
determinations of the parameters of the scaling functi@tsrdhined fronM, andM, respectively.

variablet on kg it suffices to consider the leading order Taylor expansion coefficiktfteochiral
condensate,

<L¢g>l N (%Lém >uq_o+ % (%)24r O((Ha/T)%) (3.2)

where

Xmq _ 0%y /T3 _ 9xq/T?

T 9(kg/T)2  om/T
The mixed susceptibilitym q is proportional to the leading order coefficient of the Taylor expan-
sion of the chiral condensate, which has been introducedjj TIL5, tilay also be viewed as the
quark mass derivative of the light quark number susceptibijgy. (
In the vicinity of the critical point the mixed susceptibility can be expressed mgef the

scaling functionf§(z) = dfg(z)/dz,

(3.3)

@ - ﬁh‘(l‘ﬁ)/ﬁéfé(z) . (3.4)
The scaling functiorf(z) is easily obtained fronfg(z) by using the implicit parameterization for
the latter given in Ref[[14]. We also note that o diverges as function of the light quark mass at
t = 0, i.e. at the chiral phase transition temperature. In contrast to the chiralpislity, xm ~
JdM/om, which stays finite in the chiral limit only fdr> 0, the mixed susceptibility is finite for all
t # 0. For small values of the light quark mass numerical results for the mixeestiigilities Xm q
may be compared to the right hand side of £q] (3.4). Here all parameteesithef(z) are known
and the only undetermined parametexs Using a subset of the data samples that have been used
for the scaling analysis of the order paramefgf]7, 8], we calculated thelraixaeeptibilityXmg
on lattices with temporal extemt; = 4 for several values of the quark mass. For this analysis we
used data sets separated by 50 trajectories. For the lightest quark t@ssyyans = 1/80, we
selected 4 and for the three heavier quark mass ratigsns = 1/10, 1/20, 1/40, we choose 6
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Figure2: The mixed light quark number susceptibility as a functiothefreduced temperatur@, — Tc) /T¢
(left) and the scaled mixed susceptibility as function @f sicaling variable =t /hY/B9 (right). Shown are
results obtained at two values of the cut-dff; = 4 (open symbols) antl; = 8 (filled symbols), and for
several values of the light to strange quark mass ratio. @migjint hand side, the data is compared to the
0O(2) scaling curve.

values of the gauge coupling in a narrow temperature interval close to it ghase transition
temperaturd, i.e. —0.02< (T —T¢)/T. < 0.06. Typically this involved about 500 to 950 gauge
field configurations per parameter set, except for the lightest quarknaigssvhere we analyzed
about 350 gauge field configuration. On each gauge field configunataralculated the various
operators necessary to constryjgly.

The calculation of the various operators required inversions of the estagidermion matrix
with a large set of random noise vectors. We used 500 noise vectoexbrgauge field configura-
tion and constructed unbiased estimators for the various traces that rizeddiculated. All these
calculations could be performed very efficiently on a GPU cluster.

Results obtained for the mixed light quark number susceptibjityy, on lattices with tem-
poral extentN; = 4 are shown in Fig[] 2 (left). We clearly see th@tq increases in the transition
region with decreasing values of /ms. Using the scaling relation given in Eq. (3.4) we can re-
scale the data and obtain a unique scaling curve. This scaling curve caapped onto th®(2)
scaling functionf)(z) with a simple multiplicative rescaling factorkg The resulting scaling plot
is shown in Fig[ (right). To check for possible contributions from scaliotating terms we have
analyzed the data separately for quark mass ratigexs = 1/10, 1/20 andm /ms = 1/40, 1/80.
These fits agree within statistical errors. We then determine the curvatyiesm fits to the
complete data set. Results of these fits are summarized in[Table 2.

The scaling analysis performed for the mixed susceptibility on lattices with tedngdent
N; = 4 suggests that the determination of the curvature paramgtzamn be reliably performed with
quark massesy /ms<1/10. This is in accordance with the scaling analysis of the order parameter
itself [, [8]. It thus seems to be safe to extract the curvature parameteatadsnaller values of
the lattice spacing,e. from ourN; = 8 data set, by using the smallest quark mass ratio available
there,m /ms = 1/20. We have performed calculations at five values of the temperature using
gauge field configurations on 32 8 lattices generated by the HotQCD collaboratipr} [17]. For
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N; m /Mg Kq x?/dof
4 | 1/10, 1/20| 0.0598(26)| 3.5
1/40, 1/80| 0.0573(29)] 1.5
8 1/20 | 0.0559(35)] 0.4
4,8] al 0.0591(17)] 2.1

Table 2: Determination of the curvature of the critical surface af thiral phase transition if2 + 1)-flavor
QCD as function of the light quark chemical potentigl The table summarizes fits performed separately
for two lighter and two heavier quark mass sets as well asahéined data set.

these parameter sets we have analyzed 300 to 600 gauge field confitggynatiich were separated
by 100 trajectories. Again we used 500 noise vectors for the calculatiah flevant operators
on each of the gauge field configurations. The result of this analysisvensim Fig.[2 with filled
symbols. As can be seen they agree well with results obtained on codtisesla

When rescaling data obtained fgq to the O(2) scaling curvefi(z) we need to take into
account errors on the scaling parametgendz, (or hp). This leads to a 10% error for the determi-
nation of the curvature terms. Performing a combined fit to all results obtéaneiifferent quark
mass values and lattice spacings we obkgig: 0.0592) (4) or equivalentlykg = 0.0065622) (44).
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