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We show that for small values of the chemical potential the curvature of the phase transition

line can be deduced from an analysis of scaling properties ofthe chiral condensate and its

susceptibilities. We make use of a recent analysis of the magnetic equation of state in (2+1)-

flavor QCD where a connection between the QCD parameters and the universal scaling fields

could be established. The remaining dependence of the reduced temperature on the chemi-

cal potential can be fixed by an analysis of a mixed susceptibility, obtained from a derivative

with respect to quark mass and chemical potential. We extract this dependence which de-

scribes the curvature of the phase transition line, at two values of the cut-off,aT = 1/4 and

1/8. We find that cut-off effects are small for the curvature parameter and determine the tran-

sition line in the chiral limit to leading order in the light quark chemical potential. We obtain

Tc(µB)/Tc(0) = 1−0.00656(66)(µB/T)2 +O(µ4
B).
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Figure 1: The curvature of the transition line in the (T,µB)-diagram for infinitely heavy quarks and – as the
result of this paper – in the chiral limit. For comparison we also show the freeze-out data from heavy ion
experiments, together with a parameterization for the freeze-out line from [11]. Units are normalized to the
transition temperature atµB = 0 (T0).

1. Introduction and Summary

Extending lattice QCD calculations to non-zero baryon-chemical potential or, equivalently,
to non-zero net baryon number density is known to be difficult in general.However, important
information on the QCD phase diagram can be deduced for small values of the chemical potential
by using well established numerical techniques such as reweighting [1], analytic continuation [2, 3]
or Taylor expansion [4, 5]. At non-zero values of the chemical potential a phase boundary in the
temperature and chemical potential parameter space of QCD is well defined only in the heavy quark
limit or for vanishing quark masses. In the former case the phase transition line corresponds to the
first order deconfinement transition in the pure gauge theory. At infinite values of the quark mass
this transition is independent of the chemical potential and defines a straightline in theT-µ plane.
For a large range of quark mass values the transition line is not unique. It characterizes a region
of (rapid) crossover in thermodynamic quantities and a pseudo-critical temperature extracted from
these observables may differ somewhat, depending on the observable that is used. In the chiral
limit, however, the transition line is again well defined. For sufficiently large strange quark mass it
defines a line of second order phase transitions in the universality class of three dimensionalO(4)

symmetric spin models [6].

In a recent work [7] we have shown that the curvature of the phase transition line in the chiral
limit can be obtained from an analysis of the universal scaling properties of a certain mixed suscep-
tibility which is defined by the leading order Taylor expansion coefficient ofthe chiral condensate
with respect to the light quark chemical potential. Numerical calculations havebeen performed for
(2+1)-flavor QCD keeping the heavier strange quark mass close to its physical value and decreasing
the two degenerate light quark masses towards the massless limit. We will make useof a recent
scaling analysis [7, 8] of the chiral order parameter performed with an improved staggered fermion
action. This study showed that the chiral order parameter is well described by a universal scaling
function characteristic for a three dimensional,O(N) universality class. As a result for the critical
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line in the chiral limit we find

T(µB)/T(0) = 1−0.00656(66)(µB/T)2 +O((µB/T)4) . (1.1)

This curvature is about a factor two larger than the reweighting results obtained in (2+1)-flavor
QCD [1]. It is however consistent with results obtained in calculations with imaginary chemical
potentials. In fact it lies in between the 2-flavor [2] and 3-flavor [9] simulations performed with
the standard staggered fermion formulation and also is consistent with resultsreported from (2+1)-
flavor simulations with imaginary chemical potential performed with the action usedalso in this
study (p4-action) [10]. The result is most relevant for comparison with the experimentally deter-
mined freeze-out curve as shown in Fig. 1. The parameterization found in[11] has a curvature
that is about a factor 3-4 larger which suggests that (for sufficiently large values of the chemical
potential) the freeze-out line does not follow the critical line. In the followingtwo Sections we
briefly review the scaling analysis of the order parameter and the mixed susceptibility.

2. Magnetic equation of state

In general we can separate two kinds of contributions to the free energydensity, a part (fs) that
will generate singularities in higher order derivatives of the partition function and a regular part
( fr ), we have

f (T,ml ,ms,µq,µs) = fs(T,ml ,ms,µq,µs)+ fr(T,ml ,ms,µq,µs) . (2.1)

In addition to the temperatureT, light (ml ) and strange (ms) quark masses we also allow for a
dependence of the free energy density on the quark chemical potentials.Close to the chiral phase
transition temperature at vanishing chemical potential the singular partfs will give rise to universal
scaling properties of response functions. This has been exploited to analyze basic universal features
of the QCD phase diagram close to criticality [12]. Althoughfs depends on many parameters of
the QCD Lagrangian, the universal behavior can be expressed in termsof only two relevant scaling
variablest andh, that control deviations from criticality at(t,h) = (0,0). To leading order the
scaling variableh depends only on parameters that break chiral symmetry in the light quark sector,
while t depends on all other couplings. In particular,t will depend on the light quark chemical
potential whileh remains unaffected by this in leading order,

t ≡
1
t0

(

T −Tc

Tc
+κq

(µq

T

)2
)

,

h ≡
1
h0

ml

ms
, (2.2)

whereTc is the phase transition temperature in the chiral limit andt0, h0 are non-universal scale
parameters (as isTc). While the combinationz0 = h1/βδ

0 /t0 is unique for a given theory, the values of
t0 andh0 will change under rescaling of the order parameter [8]. Just like the transition temperature
Tc alsot0 andh0 are cut-off dependent and will need to be extrapolated to the continuum limit.

The singular part of the free energy,fs, is a homogeneous function of its arguments. This can
be used to rewrite it in terms of the scaling variablez= t/h1/βδ as

fs(t,h) = h1+1/δ fs(z,1) ≡ h1+1/δ fs(z) . (2.3)
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whereβ , δ are critical exponents of the three dimensionalO(N) universality class [13].

The universal critical behavior of the order parameter,M ∼ ∂ f/∂ml , is controlled by a scaling
function fG that arises from the singular part of the free energy density after takinga derivative
with respect to the light quark mass,

M(t,h) = h1/δ fG(z) . (2.4)

The scaling functionfG(z) is well-known for theO(2) andO(4) universality classes through studies
of three dimensional spin models [14]. This so-called magnetic equation of state, Eq. (2.4), has
been analyzed recently for (2+1)-flavor QCD using an improved staggered fermion formulation
(p4-action) on lattices with temporal extentNτ = 4,8 [7, 8] and light quark masses as small as
ml/ms = 1/80, which corresponds to a pion mass that is about half its physical value.It could be
shown that the chiral order parameter can be mapped onto a universalO(2) scaling curve1 and the
scale parameterst0, h0, Tc could be extracted. The scaling analysis has been performed for two
order parameters, that are multiplicatively renormalized by multiplying the chiralcondensate with
the strange quark mass, but differ in handling additive divergences, linear in the quark mass2,

Mb ≡
ms

T4〈ψ̄ψ〉l ,

M ≡
ms

T4

(

〈ψ̄ψ〉l −
ml

ms
〈ψ̄ψ〉s

)

. (2.5)

All resulting fit parameters from fits with and without a regular contribution are summarized in
Table 1. Note that forNτ = 8 only fits including a regular contribution have been possible, since
the smallest available mass in this case has beenml/ms = 1/20.

3. Curvature of the critical line

At leading order the light quark chemical potential only enters the reducedtemperaturet, as
introduced in Eq. (2.2). Also at non-vanishing values of the quark chemical potential the phase
transition point is located att = 0. The variation of the transition temperature with chemical poten-
tial therefore is parameterized in terms of the constantκq introduced in Eq. (2.2),

Tc(µq)

Tc
= 1−κq

(µq

T

)2
+O

(

(µq

T

)4
)

. (3.1)

To determine the chiral phase transition line in theT-µ plane we thus need to determine the propor-
tionality constantκq. This is, in fact, the only left over free parameter in universal scaling functions
that needs to be determined.

The constantκq can be determined by analyzing the dependence of the chiral condensateon
the light quark chemical potential. To extract information about the dependence of the scaling

1As we are working with staggered fermionsO(2) is expected to be the relevant universality class at finite lattice
spacing. We find, however, that fits to theO(4)-symmetric model work equally well.

2At finite value s of the cut-off these terms are, of course, finite and may be viewed as a specific contribution to the
regular part that will not alter the scaling properties for sufficiently smallvalues of the quark mass.
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Nτ Mi t0 h0 Tc(0) [MeV] z0

fit using the scaling term only

4 Mb 0.0037(2) 0.0022(3) 194.5(4) 6.8(5)
M 0.0048(5) 0.0048(2) 195.6(4) 8.5(8)

fit using scaling and regular terms

4 Mb 0.00407(9) 0.00295(22) 194.9(2) 7.5(3)
M 0.00401(9) 0.00271(20) 194.8(2) 7.2(3)

8 Mb 0.00271(21) 0.00048(9) 174.1(8) 3.8(5)
M 0.00302(22) 0.00059(10) 175.1(8) 3.8(4)

Table 1: Scale parameters determined from the scaling fits on lattices of temporal extentNτ = 4 and 8.
The last column givesz0 ≡ h1/βδ

0 /t0. We give the results for parameters entering the definition of scaling
functions forMb and the subtracted order parameterM as defined in Eq. (2.5). Only the former has been
used in the analysis of the mixed susceptibilities. Note that fits including regular terms, give consistent
determinations of the parameters of the scaling functions determined fromMb andM, respectively.

variablet on κq it suffices to consider the leading order Taylor expansion coefficient of the chiral
condensate,

〈ψ̄ψ〉l

T3 =

(

〈ψ̄ψ〉l

T3

)

µq=0
+

χm,q

2T

(µq

T

)2
+O((µq/T)4) , (3.2)

where
χm,q

T
=

∂ 2〈ψ̄ψ〉l/T3

∂ (µq/T)2 =
∂ χq/T2

∂ml/T
. (3.3)

The mixed susceptibilityχm,q is proportional to the leading order coefficient of the Taylor expan-
sion of the chiral condensate, which has been introduced in [15, 16]. It may also be viewed as the
quark mass derivative of the light quark number susceptibility (χq).

In the vicinity of the critical point the mixed susceptibility can be expressed in terms of the
scaling functionf ′G(z) ≡ d fG(z)/dz,

χm,q

T
=

2κqT

t0ms
h−(1−β )/βδ f ′G(z) . (3.4)

The scaling functionf ′G(z) is easily obtained fromfG(z) by using the implicit parameterization for
the latter given in Ref. [14]. We also note thatχm,q diverges as function of the light quark mass at
t = 0, i.e. at the chiral phase transition temperature. In contrast to the chiral susceptibility, χm ∼

∂M/∂ml , which stays finite in the chiral limit only fort > 0, the mixed susceptibility is finite for all
t 6= 0. For small values of the light quark mass numerical results for the mixed susceptibilitiesχm,q

may be compared to the right hand side of Eq. (3.4). Here all parameters that enter f ′G(z) are known
and the only undetermined parameter isκq. Using a subset of the data samples that have been used
for the scaling analysis of the order parameter [7, 8], we calculated the mixed susceptibilityχm,q

on lattices with temporal extentNτ = 4 for several values of the quark mass. For this analysis we
used data sets separated by 50 trajectories. For the lightest quark mass ratio, ml/ms = 1/80, we
selected 4 and for the three heavier quark mass ratios,ml/ms = 1/10, 1/20, 1/40, we choose 6
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Figure 2: The mixed light quark number susceptibility as a function ofthe reduced temperature,(T−Tc)/Tc

(left) and the scaled mixed susceptibility as function of the scaling variablez= t/h1/βδ (right). Shown are
results obtained at two values of the cut-off,Nτ = 4 (open symbols) andNτ = 8 (filled symbols), and for
several values of the light to strange quark mass ratio. On the right hand side, the data is compared to the
O(2) scaling curve.

values of the gauge coupling in a narrow temperature interval close to the chiral phase transition
temperatureTc, i.e. −0.02≤ (T −Tc)/Tc ≤ 0.06. Typically this involved about 500 to 950 gauge
field configurations per parameter set, except for the lightest quark massratio where we analyzed
about 350 gauge field configuration. On each gauge field configurationwe calculated the various
operators necessary to constructχm,q.

The calculation of the various operators required inversions of the staggered fermion matrix
with a large set of random noise vectors. We used 500 noise vectors on each gauge field configura-
tion and constructed unbiased estimators for the various traces that need tobe calculated. All these
calculations could be performed very efficiently on a GPU cluster.

Results obtained for the mixed light quark number susceptibility,χm,q, on lattices with tem-
poral extentNτ = 4 are shown in Fig. 2 (left). We clearly see thatχm,q increases in the transition
region with decreasing values ofml/ms. Using the scaling relation given in Eq. (3.4) we can re-
scale the data and obtain a unique scaling curve. This scaling curve can bemapped onto theO(2)

scaling functionf ′G(z) with a simple multiplicative rescaling factor, 2κq. The resulting scaling plot
is shown in Fig. 2 (right). To check for possible contributions from scalingviolating terms we have
analyzed the data separately for quark mass ratiosml/ms = 1/10, 1/20 andml/ms = 1/40, 1/80.
These fits agree within statistical errors. We then determine the curvaturesκq from fits to the
complete data set. Results of these fits are summarized in Table 2.

The scaling analysis performed for the mixed susceptibility on lattices with temporal extent
Nτ = 4 suggests that the determination of the curvature parameterκµ can be reliably performed with
quark massesml/ms<∼1/10. This is in accordance with the scaling analysis of the order parameter
itself [7, 8]. It thus seems to be safe to extract the curvature parameter also at smaller values of
the lattice spacing,i.e. from ourNτ = 8 data set, by using the smallest quark mass ratio available
there,ml/ms = 1/20. We have performed calculations at five values of the temperature using
gauge field configurations on 323× 8 lattices generated by the HotQCD collaboration [17]. For
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Nτ ml/ms κq χ2/dof

4 1/10, 1/20 0.0598(26) 3.5
1/40, 1/80 0.0573(29) 1.5

8 1/20 0.0559(35) 0.4

4, 8 all 0.0591(17) 2.1

Table 2: Determination of the curvature of the critical surface of the chiral phase transition in(2+1)-flavor
QCD as function of the light quark chemical potentialµq. The table summarizes fits performed separately
for two lighter and two heavier quark mass sets as well as the combined data set.

these parameter sets we have analyzed 300 to 600 gauge field configurations, which were separated
by 100 trajectories. Again we used 500 noise vectors for the calculation ofall relevant operators
on each of the gauge field configurations. The result of this analysis is shown in Fig. 2 with filled
symbols. As can be seen they agree well with results obtained on coarser lattices.

When rescaling data obtained forχm,q to theO(2) scaling curvef ′G(z) we need to take into
account errors on the scaling parameterst0 andz0 (or h0). This leads to a 10% error for the determi-
nation of the curvature terms. Performing a combined fit to all results obtainedfor different quark
mass values and lattice spacings we obtainκq = 0.059(2)(4) or equivalentlyκB = 0.00656(22)(44).
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