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1. Introduction

In order to extract physical information from lattice simulation the relationskigvéen the
bare lattice and the renormalized coupling is an essential ingredient. Oneaaidioufar interested
in theMS coupling, the most widely used in particle physics. Its matching to the lattice regula
tion defined by the tree level Symanzik gauge action and Wilson fermionsverkap to one loop
(see for example[J1]). Can a higher order knowledge of the relatiorhigseful? The answer is
yes: the computation is not only interesting on its own, but also a requisite fohing observ-
ables or renormalization coefficients at high loop.

We are indeed interested in computing the three loop renormalization codffigiem the
RI’-MOM scheme [R] ( stands for a generic current). This can be done since the anomalous di-
mensions are known up to three loofis [B] [4]: in force of this, it is possibfectthe logarithms
in Zr. Since anomalous dimensions are known as expansions in a contmnlome needs a (two
loop) matching between the lattice and continuum coupling constants.

The general form of the matching between two schemes is given by
a(su) = a'(p) +eu(s)a’ () +ca(s)a’ (1) + .., (1.1)

wheres s a coefficient that accounts for the choice of a different scale, anddéfficientsc; (s)
andc;(s) are given by

c(s) = 2bolog% — 2bplogs 1.2)
by, — b,
bo
bo, b1 andb, are coefficients of thg function, and\ is the scale associated to the regularization. It
is worth to remember thdy andb; are universal, whilé\ andb, depend on the scheme. Ef.]1.3)

states that the two loop matching @f s to a5 also entails the knowledge bgLS, sincebg"iS is
known. This is the purpose of this work.

A
Co(s) = c1(s)? — 2by logs+ 2by log N (1.3)

2. Method

One could of course envisage a direct matchinyi&fto the tree level Symanzik scheme. We
will go through a different strategy, matching first to an intermediate schasiewill be clear, we
will need no computation of logarithms. Since we make use of Numerical SticPRasturbation
Theory (NSPT) ], this would require a terrific numerical precision.

Following [8] we compute the static quark potential from Wilson loops and € netio:

B W(RT-1)
which in turn can yield the static potential via
V(R) = Iim Vy (R). (2.2)

T—o00
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The static quark potential is the quantity which describes the interactionyeokagnfinitely
heavyqq pair. In its full (non-perturbative) form, it is in first approximation just them of a
string tension, which is responsible for confinement, afd hcontribution, whose interpretation
is different in different IR/UV regimes

V(R) = %raR. (2.3)

In the perturbative (UV) regime the first term is just the Coulomb potentialubimny the defini-
tions (2.1) and[(2]2) one is left in addition with a linearly divergent term, whighs the so called
residual mass of the heavy quark:

V(R) = 26m— Cr “VF(QR) . (2.4)

Eq. (2.3) defines the potential coupliog (R) we will be concerned with.

A perturbative computation of the static quark potential in our lattice scherds rea

a
V(R) = 26m—Ck TTLS (1+ca(Raris+c(R)af s+ 0(a39), (2.5)

and comparing with[(214) one can read the matching (1.1) of the renormakzé®) in terms of
(the bare)rr s

av(R) = aris+ci(R)af s+ C(R)a? s+ O (af9). (2.6)
In this case[(1]2) and (3.3) read
a(R) = 2bolog Y- + 2bglogR 2.7)
AtLs
A bV TS
c(R) = c1(R)2+2bylogR+ 2bylog—+ + 22 (2.8)
ATLs bo

As a byproduct of the computation we also obtain the residual dwasss an expansion iar. s
Zoém(”) affl. (2.9)
n=

Once we have computed the matching betweg(R) and a1 s, we need the matching of
av (R) to ays. This can be read from the computation[ih [7].

3. Computation

By making use of NSPT, we computed the Wilson lo®géR T) for all the values ofR
andT up to 16 on a 32lattice. The quark mass was set to zero by plugging the appropriate
mass counterterm for the perturbative critical m@bs [8]. Results weragea over~150 lattice
configurations.

We extracted both the residual quark mass and the coefficient we aresietkiin by fitting
(order-by-order) our data to the expected form defined by[eg..(2.5)

Given the finite lattice size nature of our computation we can not actually takeenéhe
T — oo limit nor the continuum limit. In other words, we expect that results are distbrtdaittice
artifacts. In order to minimize these effects we consider an intervRlsoich that
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e T>R(T/R~25);
e Ritself is not too smallR > 3);
e the fitting intervals themselves are from 3 up to 7 points long.

Results are of course affected by both systematic (lattice artifacts) andicahtsrors. The
relative weigth of these effects is different for different orders.isTdctually opens the way to
looking for a careful tradeoff between the errors.

We adopt the following strategy: when systematic effects are clearly digimajle (i.e. sta-
tistical effects are relatively small), we only consides 16 data. This is the case of the tree level
potential (figurdl): the differentr (R) are separated curves (though they intersect within errors).

Figure 1: Tree level potential. The different lines represent théRY extracted form different values of T,
from T = 13 (higher) to T= 16 (lower).

When statistical errors are significant on their own, we need a diffeygmach. In figurf] 2
we show the two loop potential/r (R) for different values ofl widely intersect within errors; in
other terms, the systematic (finitg effect is not that clear. In this case we decided to neglect this
systematic effect and tame the statistical noise by averaging over diffakms of T (starting
fromT =14 toT = 16). In other words, we thus obtain smoother curves.
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Figure 2: Two loop potential. In this case statistical errors are higlthan systematic one, making hard to
distinguish them.
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4. Result

In order to verify the reliability of this computation we first checked knowsutts. The
correctness of this is not trivial, since at any order residual mass isowrk and we get it as a
byproduct. We estimate 8 R < 7 as the best fitting interval for tree level and one loop; the same
interval was also taken for two loop computation.

=
- T=16

Figure 3: Data and fit (continuous line) for tree level potential.

In figure[B we show tree level data, to be fitted to the functional form

V(R)© = 26m©@ — e (4.1)

We obtaindm©@ = 1.84+0.01, whileCr is reconstructed to a few percent. This gives a rough
idea of the impact of systematic effects.

In figure[# we show one loop data.
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-

Figure 4: One loop potential: data and fit.

At one loop we are able to extract the constant terrrk@g, which we can compare to the
analytical result:

V(R)(l):ém(l)—C—FZbo IogR+IogA—V . (4.2)
R AtLs
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We obtain Io% =2.8+0.1, to be compared to the analytical resuB91 []]. We also obtain
dmY =571+0.01.

IUE)
At two loop we finally tackle the determination of the quantity we are interestebériﬁ)—gz—):

o A, BV _pTtS
V(R)(2>:5m(2)—ﬁ cl(R)2+2b1|ogR+2b1Iog/\T + -2 2 : (4.3)

LS bo

Figure 5: Two loop potential: data and fit.

In figure[$ one can see that two loop fluctuations are larger than at lawlersp and as a
consequence the fit will suffer of a larger indetermination. In this casebiain dm(® = 30+ 1
and

) _p(TLS
2 2 =4+l (4.4)
bo
Though the relative error in this value is high, we must emphasize that wiatarested in the
whole coefficient of ther3 term, in particular in the final matching s

Qs = OTLs+2.798661F s+ 11.5(+1.0)af s+ O(af s, (4.5)
where the relative error on the second coefficient is less than 10%. Weidege trying to increase

our accuracy, one should keep in mind that what we are really interestedhia impact of this
matching in the logarithmic contribution to tiZg we mentioned at the very beginning.
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