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1. Introduction

In order to extract physical information from lattice simulation the relationship between the
bare lattice and the renormalized coupling is an essential ingredient. One is in particular interested
in theMScoupling, the most widely used in particle physics. Its matching to the lattice regulariza-
tion defined by the tree level Symanzik gauge action and Wilson fermions is known up to one loop
(see for example [1]). Can a higher order knowledge of the relationshipbe useful? The answer is
yes: the computation is not only interesting on its own, but also a requisite for matching observ-
ables or renormalization coefficients at high loop.

We are indeed interested in computing the three loop renormalization coefficients ZΓ in the
RI’-MOM scheme [2] (Γ stands for a generic current). This can be done since the anomalous di-
mensions are known up to three loops [3] [4]: in force of this, it is possible tofix the logarithms
in ZΓ. Since anomalous dimensions are known as expansions in a continuumαs, one needs a (two
loop) matching between the lattice and continuum coupling constants.

The general form of the matching between two schemes is given by

α(sµ) = α ′(µ)+c1(s)α ′(µ)2 +c2(s)α ′(µ)3 + . . . , (1.1)

wheres is a coefficient that accounts for the choice of a different scale, and the coefficientsc1(s)
andc2(s) are given by

c1(s) = 2b0 log
Λ
Λ′

−2b0 logs (1.2)

c2(s) = c1(s)
2
−2b1 logs+2b1 log

Λ
Λ′

+
b2−b′2

b0
. (1.3)

b0,b1 andb2 are coefficients of theβ function, andΛ is the scale associated to the regularization. It
is worth to remember thatb0 andb1 are universal, whileΛ andb2 depend on the scheme. Eq. (1.3)
states that the two loop matching ofαTLS to αMS also entails the knowledge ofbTLS

2 , sincebMS
2 is

known. This is the purpose of this work.

2. Method

One could of course envisage a direct matching ofMS to the tree level Symanzik scheme. We
will go through a different strategy, matching first to an intermediate scheme.As it will be clear, we
will need no computation of logarithms. Since we make use of Numerical Stochastic Perturbation
Theory (NSPT) [5], this would require a terrific numerical precision.

Following [6] we compute the static quark potential from Wilson loops and Creutz ratio:

VT(R) = log

(

W(R,T −1)

W(T,R)

)

(2.1)

which in turn can yield the static potential via

V(R) = lim
T→∞

VT(R). (2.2)
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The static quark potential is the quantity which describes the interaction energy of a infinitely
heavyqq̄ pair. In its full (non-perturbative) form, it is in first approximation just thesum of a
string tension, which is responsible for confinement, and aR−1 contribution, whose interpretation
is different in different IR/UV regimes

V(R) =
C
R

+σR. (2.3)

In the perturbative (UV) regime the first term is just the Coulomb potential, butusing the defini-
tions (2.1) and (2.2) one is left in addition with a linearly divergent term, whichgives the so called
residual mass of the heavy quark:

V(R) = 2δm−CF
αV(R)

R
. (2.4)

Eq. (2.4) defines the potential couplingαV(R) we will be concerned with.

A perturbative computation of the static quark potential in our lattice scheme reads

V(R) = 2δm−CF
αTLS

R

(

1+c1(R)αTLS+c2(R)α2
TLS+O(α3

TLS)
)

, (2.5)

and comparing with (2.4) one can read the matching (1.1) of the renormalizedαV(R) in terms of
(the bare)αTLS:

αV(R) = αTLS+c1(R)α2
TLS+c2(R)α3

TLS+O(α4
TLS). (2.6)

In this case (1.2) and (1.3) read

c1(R) = 2b0 log
ΛV

ΛTLS
+2b0 logR (2.7)

c2(R) = c1(R)2 +2b1 logR+2b1 log
ΛV

ΛTLS
+

b(V)
2 −b(TLS)

2

b0
. (2.8)

As a byproduct of the computation we also obtain the residual massδmas an expansion inαTLS

∑
n≥0

δm(n)αn+1
TLS. (2.9)

Once we have computed the matching betweenαV(R) and αTLS, we need the matching of
αV(R) to αMS. This can be read from the computation in [7].

3. Computation

By making use of NSPT, we computed the Wilson loopsW(R,T) for all the values ofR
and T up to 16 on a 324 lattice. The quark mass was set to zero by plugging the appropriate
mass counterterm for the perturbative critical mass [8]. Results were averaged over∼150 lattice
configurations.

We extracted both the residual quark mass and the coefficient we are interested in by fitting
(order-by-order) our data to the expected form defined by eq. (2.5).

Given the finite lattice size nature of our computation we can not actually take neither the
T → ∞ limit nor the continuum limit. In other words, we expect that results are distortedby lattice
artifacts. In order to minimize these effects we consider an interval ofRsuch that
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• T > R (T/R∼ 2.5);

• R itself is not too small (R≥ 3);

• the fitting intervals themselves are from 3 up to 7 points long.

Results are of course affected by both systematic (lattice artifacts) and statistical errors. The
relative weigth of these effects is different for different orders. This actually opens the way to
looking for a careful tradeoff between the errors.

We adopt the following strategy: when systematic effects are clearly distinguishable (i.e. sta-
tistical effects are relatively small), we only considerT = 16 data. This is the case of the tree level
potential (figure 1): the differentVT(R) are separated curves (though they intersect within errors).
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Figure 1: Tree level potential. The different lines represent the VT(R) extracted form different values of T ,
from T = 13 (higher) to T= 16 (lower).

When statistical errors are significant on their own, we need a differentapproach. In figure 2
we show the two loop potential.VT(R) for different values ofT widely intersect within errors; in
other terms, the systematic (finiteT) effect is not that clear. In this case we decided to neglect this
systematic effect and tame the statistical noise by averaging over differentvalues ofT (starting
from T = 14 toT = 16). In other words, we thus obtain smoother curves.
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Figure 2: Two loop potential. In this case statistical errors are higher than systematic one, making hard to
distinguish them.
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4. Result

In order to verify the reliability of this computation we first checked known results. The
correctness of this is not trivial, since at any order residual mass is unknown, and we get it as a
byproduct. We estimate 3≤ R≤ 7 as the best fitting interval for tree level and one loop; the same
interval was also taken for two loop computation.
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Figure 3: Data and fit (continuous line) for tree level potential.

In figure 3 we show tree level data, to be fitted to the functional form

V(R)(0) = 2δm(0)
−

CF

R
. (4.1)

We obtainδm(0) = 1.84±0.01, whileCF is reconstructed to a few percent. This gives a rough
idea of the impact of systematic effects.

In figure 4 we show one loop data.
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Figure 4: One loop potential: data and fit.

At one loop we are able to extract the constant term logΛV
Λ(TLS)

, which we can compare to the
analytical result:

V(R)(1) = δm(1)
−

CF

R
2b0

(

logR+ log
ΛV

ΛTLS

)

. (4.2)
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We obtain log ΛV
Λ(TLS)

= 2.8±0.1, to be compared to the analytical result 2.8191 [1]. We also obtain

δm(1) = 5.71±0.01.

At two loop we finally tackle the determination of the quantity we are interested in (b(V)
2 −b(TLS)

2
b0

):

V(R)(2) = δm(2)
−

CF

R

(

c1(R)2 +2b1 logR+2b1 log
ΛV

ΛTLS
+

b(V)
2 −b(TLS)

2

b0

)

. (4.3)
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Figure 5: Two loop potential: data and fit.

In figure 5 one can see that two loop fluctuations are larger than at lower orders, and as a
consequence the fit will suffer of a larger indetermination. In this case weobtainδm(2) = 30±1
and

b(V)
2 −b(TLS)

2

b0
= 4±1. (4.4)

Though the relative error in this value is high, we must emphasize that we areinterested in the
whole coefficient of theα3 term, in particular in the final matching toαMS

αMS = αTLS+2.79866α2
TLS+11.5(±1.0)α3

TLS+O(α4
TLS), (4.5)

where the relative error on the second coefficient is less than 10%. Whilewe are trying to increase
our accuracy, one should keep in mind that what we are really interested inis the impact of this
matching in the logarithmic contribution to theZΓ we mentioned at the very beginning.
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