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Comparing perturbative and non-perturbative results éaormalization constants has been an
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1. Motivations

The lattice community regards by now a percent accuracy®ndmputation of many observ-
ables as a realistic goal: we have entered the era of predi€d computations. This of course
requires that all the systematic effects are well underrobntVith this respect, comparing per-
turbative and non-perturbative results for renormaliationstants has been an issue for a while.
There are cases in which power divergences do not show upodarithmic divergences there is
no theoretical obstruction to a perturbative computathart, this is only useful provided one can
perform the computation at high loops [1]. The quark masemealization constant is a prototype
example: discrepancies between different results have $eeeral times ascribed to the issue of
perturbative vs non-perturbative computation of the @hvenormalization constants [2].

Our group has been involved for a while in a project aimingighHoops computations of
renormalization constants by Numerical Stochastic Peation Theory (NSPT) [3]. A first mo-
tivation is a fundamental one: since in principle the probfraultiplicative renormalization has
been given in perturbation theory, one should regards apirtdent perturbative confirmation of
non-perturbative results as a precious piece of informafldere are of course also more practical
motivations, and the quark mass computation is once agaiod gxample. Many groups are in-
volved in the same computation, adopting many (differeagutarizations, with many (different)
systematic effects to control. We aim at providing high leopsults for different regularizations,
with a good control on systematics. In the following we witiclis the regularization scheme
defined by tree level Symanzyk gluonic action and two degeeadn; = 2) Wilson fermions. Em-
phasis will be on methodology, for which we claim a very goodtcol on all the systematics at
three loop level, with the case of the scalar current takemasxample (and the quark mass always
kept as the conceptual background). Actual results wilssaed in a future publication.

In order to claim good control on systematics, each apprtatie computation of renorma-
lization constants has to face several issues:

e A perturbative computation has of course to face truncatioors,i.e. the feasibility of high
loop computations should be addressed.

e Most renormalization schemes are defined in the masslegslinall these cases one should
reach the chiral limit, which in non-perturbative compigas is obtained from an extrapo-
lation procedure.

e The continuum limit should be computed.

e In many cases, the renormalization scheme is defined in fimiténvolume; thus, finite size
effects should be kept under control.

While the first issue only pertains to perturbative compaiest, all the others are a common
problem for both perturbative and non-perturbative coratioms.
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2. The control of systematics
We now proceed to address each source of systematics in diF Bi@nputations.

2.1 We can go to high orders

Why are we able to reach high orders? The very first reasoreiagh of NSPT [4]. Still, in
any NSPT computations, one has to deal with numerical acgymablems (we can naively think
of NSPT as a perturbative MonteCarlo). In view of this, disegling logarithmic contributions
would require a terrific precision.

A popular scheme for renormalization on the lattice is theNRDM scheme. For quark bilinears
(like the scalar current) one has to start from Green funsticonstructed as expectation values
computed on external quark states at fixed momenpjrfrom which one then obtains vertex
functions by amputationy p) is the quark propagator)

Gr(p) = [X(PIPNrYK ) Mr(p) =S PGPS P, @1
The quark field renormalization constants has to be comgteuthe condition

1 Tr(pS(p).

Zy(H,9) = —i75 7 (2.2)
After projecting on tree-level structure, one gets rendization conditions that read
Or(p)=Tr (PorTr(P)  Zor (H,9)Zg (H.9)Or (P)|pe—ye = 1. (2.3)

The big advantage of this scheme is that the relevant anamdimensions are known at three loop
[5]. Being RI'-MOM regulator independent, it is possibleuse this information in constructing
the renormalization constants we are interested.@n,

Z(f) =1+ 5 daf R () do= 3 AL .4

In the previous formuld stands for logau), while F (1) entails the irrelevant effects. From the
definition of the anomalous dimension, one can get for exarfglZ,

Zg(f) = 1+ 2§ a0+ |2 ~ 2671 | o+
+ [Zés) - (4%52) Ki+24” + 2véz>Zél>) L+ 4Boyé2>L2] as. (2.5)
Here yéi) are the perturnative orders of the quark field anomalous msioa (with the big advan-

tage thatyé1> = 0 in Landau gauge). Thi§ are coefficients entering the expansionaig of the
renormalized coupling in whick has been compute@.§. a(u) = ao— (2BoL — Kl)a§+ o)

2.2 We can stay in the chiral limit

Staying in the chiral limit in perturbation theory simply ammts (for Wilson fermions) to the
knowledge of the critical mass. The latter can be computath the inverse quark propagator

aro(p, M, B4 = aS(p, e, ) =ip+iw(p) — Z(p, e, B (2.6)
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by recognizing the component along the identﬁy(@, M) in the expansion oi(f), Mer, 1) (in
our notation the hat denotes dimensionless quantitiesrepdrticularp™= pa)

(P, e, B1) = (P er, B + Zv (P, er, B + 2o, er, B7H). (2.7)
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Figure 1: 1-loop3.(p, e ) Vs (ap)2. Figure 2: 3-loop2c(p, e ) Vs (ap)2.

Since 1-loop and 2-loop orders are known [6], we plug thelues as counterterms in our
computations (see Fig. 1). At 3-loop we get instead a nowellrésee Fig. 2): the 3-loop critical
mass for the scheme defined = 2 Wilson fermions and tree level Symanzik gluonic action. In
Fig. 1 and 2 we plot data from both 8blue) and 16 (red) lattices.

2.3 We can get the continuum limit

We take again the quark field renormalization contant as ampie. Suppose one has taken
into account the critical mass (so that we are in the chinait)j one can then tackle the (vector)
component along thg matrices,iv(ﬁ, M, B71) in eq. (2.7). Given the hypercubic symmetry of
the lattice regularization, we can make the ansatz

v =15 vubu (i\(,‘” + P25 4 pis? 4 ) . (2.8)
I

Thei\(,”) only depend on scalar invariants. Once one has subtraaedldvant logarithms (as
dictated by the expansion of the anomalous dimension), eéetirwith quantitie$ we can fit to

LA D LATHD AL AT @9
% Y VEp

The only finite contribution in the continuum limit isfo). We can get it by fitting our data
to the previous formula. In Fig. 3 we show an example of suchatfil-loop; keep in mind that
there is no log in this case). The analytical result is knoWrand, as one can see, it is correctly
reproduced. Notice that the point associated to the lowestemtum is missed by the fit (actually,
it has not even been taken into account). In Fig. 4 we presaatfdom both 32 (blue) and 16
(red) lattices. Notice that the point associated to the stwgomentum appears to be problematic
also in the case of Tdattice.

Iwith a slight abuse of notation we uiéo) for both the log-subtracted and the log-unsubtracted déyant



Perturbative vs non-perturbative renormalization: the case of the quark mass Francesco Di Renzo

-0.2

-0.55

-0.65

Figure 3: 1-loopZ, vs. (ap)? on 32 Figure 4: 1-loopZg vs. (ap)? on both 32 (blue)
and 16 (red).

2.4 We can get the infinite volume limit

As we pointed out in [3], things get worse when one inspectentities for which an anoma-
lous dimension is in place. The very first case we reporteldarcase of Wilson gluonic action was
just the scalar current. Much the same holds in the preseetafaree level Symanzik action. Our
master formula (2.3) at 1-loop reads

z§) —zP = ol — L, (2.10)

No log comes fromZ,, while ys(l) is the 1-loop anomalous dimension for the current. Fig. 5

summarizes all the relevant information for the problemaaich The red curve is a fit discarding
just the point associated to the lowest momentum and coelpletisses the right result. The black
curve is a fit discarding a wider interval in the IR; it succe@atgetting the analytical result. Fig. 6
shows how this can be ascribed to a finite size effect; thehireted quantitl” is plotted for
both a 32 (blue) and a 16(red) lattice. One can recognize just the same pattern tegpor [3] for
the case of the simple plaquette action.
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Figure 5: Zél) — 7Y vs. (ap)? on 32; refer to  Figure 6: O vs. (ap)2 on both 32 (blue) and
eq. (2.10). 16* (red); refer to eq. (2.10)

A solution to the problem has been put forward and shown tdfieetse in [8]. On dimen-
sional grounds, one looks for a dependencgloand sums and subtracts the infinite volume result
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one is interested in. This defines the finite size eﬂi{t,“)(f), pL)

20 (B L) = 507 (p.) + (£ (B, pL) — £ (,9))
= 5 (p.o0) + A" (P, pL), (2.12)
so that a better formula to fit is

A~

SV(p,pL) = a1+ af” va+a Z (z >+AZV (p,pL)+... (2.12)

This is a useful formula once we realize that in first appration we can look for thep = 0
value forAi\(,”)(f), pL) (we neglect finitea corrections on top of finit& corrections). We are
thus only left with a function opL. This means that we can fit the same correction for the same
(n1,n2,n3,Nny) tuple on different lattice sizes:

~ A 2
B8 (p.pL) ~ 25 (PL)  pul = AL = 2m, 219

It is useful to go back and inspect again Fig. 3 and Fig. 4.dadlg] we are saying that the
error on the points associated to the lowest momenta - gmmeing to the samél, 1,1, 1) tuple -
is in first approximation the same on both*3Blue points) and 16(red points).

3. Current status of our computations
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Figure 7: One, two and three loop data f85 andOs. These are unsubtracted daita. (logarithms are still
to be subtracted). Data for bothB3®lue) and 18 (red).
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In Fig. 7 we plot our data for the renormalization of the quiekd and the scalar current. At
the time of the conference we had in our hands only the final ftattwo lattice sizes (32and
16%. In the meantime data for 2420%, and 12 have been collected. We are currently in the final
stage of our analysis.e. we are fitting the whole set of data to formulas like eq. (2.12)

Acknowledgements

This work is supported by I.N.F.N. under the research ptd¢ldl and by the Research
Executive Agency (REA) of the European Union under Grante&gnent number PITN-GA-2009-
238353 (ITN STRONGnet).

References

[1] For analytical two loops computations of lattice renatization constants see A. Skouroupathis,
H. Panagopoulos, Phys. R&76 (2007) 094514 [arXiv:0707.2906 [hep-lat]]; A. Skouroupiat
H. Panagopoulos, Phys. R&79 (2009) 094508 [arXiv:0811.4264 [hep-lat]].

[2] For adiscussion on this issue see for example B. Blossigr [ European Twisted Mass
Collaboration ], JHE®804 (2008) 020 [arXiv:0709.4574 [hep-lat]].

[3] F. Di Renzo, V. Miccio, L. Scorzato and C. Torrero, EuryBhJ.C51 (2007) 645-657
[hep-lat/0611013].

[4] NSPT was first introduced in F. Di Renzo, E. Onofri, G. Masini and P. Marenzoni, Nucl. Phys. B
426(1994) 675 [arXiv:hep-1at/9405019]. For a review see F. BhRo, L. Scorzato, JHEG410
(2004) 073 [hep-lat/0410010].

[5] J. A. Gracey, Nucl. Phys. B62, 247 (2003) [arXiv:hep-ph/0304113].

[6] A. Skouroupathis, M. Constantinou, H. PanagopoulogsPRev.D77 (2008) 014513
[arXiv:0801.3146 [hep-lat]].

[7] S. Aoki, K. i. Nagali, Y. Taniguchi and A. Ukawa, Phys. R&/58, 074505 (1998)
[arXiv:hep-1at/9802034].

[8] F. Di Renzo, E. -M. llgenfritz, H. Perlt, A. Schiller and Correro, Nucl. PhysB831 (2010) 262-284
[arXiv:0912.4152 [hep-lat]]. F. Di Renzo, E. -M. ligenfijtH. Perlt, A. Schiller and C. Torrero, Nucl.
Phys.B842, 122-139 (2011) [arXiv:1008.2617 [hep-lat]].



