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Comparing perturbative and non-perturbative results for renormalization constants has been an

issue for a while. The quark mass renormalization constant is a prototype example: discrepancies

between different results have been several times ascribedto this issue. Given the logarithmic

nature of the divergence, there is no theoretical obstruction to a perturbative computation. The

problem, as it is obvious, is how to perform the computation at high loops. Truncation errors

should in turn be compared to a variety of errors (e.g. irrelevant effects, chiral extrapolation,

finite size) which should be carefully assessed as well. We discuss the status of our computations

in Numerical Stochastic Perturbation Theory, in particular for the tree level Symanzik improved

gauge action atn f = 2. The emphasis is on main goal: how to take all the systematiceffects under

control at three loop level.
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1. Motivations

The lattice community regards by now a percent accuracy on the computation of many observ-
ables as a realistic goal: we have entered the era of precision LGT computations. This of course
requires that all the systematic effects are well under control. With this respect, comparing per-
turbative and non-perturbative results for renormalization constants has been an issue for a while.
There are cases in which power divergences do not show up: forlogarithmic divergences there is
no theoretical obstruction to a perturbative computation,but this is only useful provided one can
perform the computation at high loops [1]. The quark mass renormalization constant is a prototype
example: discrepancies between different results have been several times ascribed to the issue of
perturbative vs non-perturbative computation of the relevant renormalization constants [2].

Our group has been involved for a while in a project aiming at high loops computations of
renormalization constants by Numerical Stochastic Perturbation Theory (NSPT) [3]. A first mo-
tivation is a fundamental one: since in principle the proof of multiplicative renormalization has
been given in perturbation theory, one should regards an independent perturbative confirmation of
non-perturbative results as a precious piece of information. There are of course also more practical
motivations, and the quark mass computation is once again a good example. Many groups are in-
volved in the same computation, adopting many (different) regularizations, with many (different)
systematic effects to control. We aim at providing high loops results for different regularizations,
with a good control on systematics. In the following we will focus the regularization scheme
defined by tree level Symanzyk gluonic action and two degenerate (n f = 2) Wilson fermions. Em-
phasis will be on methodology, for which we claim a very good control on all the systematics at
three loop level, with the case of the scalar current taken asan example (and the quark mass always
kept as the conceptual background). Actual results will be issued in a future publication.

In order to claim good control on systematics, each approachto the computation of renorma-
lization constants has to face several issues:

• A perturbative computation has of course to face truncationerrors,i.e. the feasibility of high
loop computations should be addressed.

• Most renormalization schemes are defined in the massless limit. In all these cases one should
reach the chiral limit, which in non-perturbative computations is obtained from an extrapo-
lation procedure.

• The continuum limit should be computed.

• In many cases, the renormalization scheme is defined in the infinite volume; thus, finite size
effects should be kept under control.

While the first issue only pertains to perturbative computations, all the others are a common
problem for both perturbative and non-perturbative computations.
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2. The control of systematics

We now proceed to address each source of systematics in our NSPT computations.

2.1 We can go to high orders

Why are we able to reach high orders? The very first reason is the use of NSPT [4]. Still, in
any NSPT computations, one has to deal with numerical accuracy problems (we can naively think
of NSPT as a perturbative MonteCarlo). In view of this, disentangling logarithmic contributions
would require a terrific precision.
A popular scheme for renormalization on the lattice is the RI’-MOM scheme. For quark bilinears
(like the scalar current) one has to start from Green functions constructed as expectation values
computed on external quark states at fixed momentump, from which one then obtains vertex
functions by amputation (S(p) is the quark propagator)

GΓ(p) =

∫

dx〈p| ψ(x)Γψ(x) |p〉 ΓΓ(p) = S−1(p)GΓ(p)S−1(p). (2.1)

The quark field renormalization constants has to be computedfrom the condition

Zq(µ ,g) = −i
1
12

Tr(/pS−1(p))

p2 . (2.2)

After projecting on tree-level structure, one gets renormalization conditions that read

OΓ(p) = Tr
(

P̂OΓΓΓ(p)
)

ZOΓ(µ ,g)Z−1
q (µ ,g)OΓ(p)|p2=µ2 = 1. (2.3)

The big advantage of this scheme is that the relevant anomalous dimensions are known at three loop
[5]. Being RI’-MOM regulator independent, it is possible touse this information in constructing
the renormalization constants we are interested in,e.g.

Zq(µ̂) = 1+ ∑
n>0

dnαn
0 + F(µ̂) dn =

n

∑
i=0

d(i)
n Li. (2.4)

In the previous formulaL stands for log(aµ), while F(µ̂) entails the irrelevant effects. From the
definition of the anomalous dimension, one can get for example for Zq

Zq(µ̂) = 1+ Z(1)
q α0 +

[

Z(2)
q −2γ(2)

q L
]

α2
0 +

+
[

Z(3)
q −

(

4γ(2)
q K1 +2γ(3)

q +2γ(2)
q Z(1)

q

)

L +4β0γ(2)
q L2

]

α3
0 . (2.5)

Hereγ(i)
q are the perturnative orders of the quark field anomalous dimension (with the big advan-

tage thatγ(1)
q = 0 in Landau gauge). TheKi are coefficients entering the expansion inα0 of the

renormalized coupling in whichγ has been computed (e.g. α(µ) = α0− (2β0L−K1)α2
0 + . . .).

2.2 We can stay in the chiral limit

Staying in the chiral limit in perturbation theory simply amounts (for Wilson fermions) to the
knowledge of the critical mass. The latter can be computed from the inverse quark propagator

aΓ2(p̂,m̂cr,β−1) = aS(p̂,m̂cr,β−1)−1 = i/̂p+ m̂W (p̂)− Σ̂(p̂,m̂cr,β−1) (2.6)
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by recognizing the component along the identity (Σ̂c(p̂,m̂cr) in the expansion of̂Σ(p̂,m̂cr,β−1) (in
our notation the hat denotes dimensionless quantities and in particular ˆp = pa)

Σ̂(p̂,m̂cr,β−1) = Σ̂c(p̂,m̂cr,β−1)+ Σ̂V (p̂,m̂cr,β−1)+ Σ̂o(p̂,m̂cr,β−1). (2.7)
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Figure 1: 1-loopΣ̂c(p̂,m̂cr) vs (ap)2.
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Figure 2: 3-loopΣ̂c(p̂,m̂cr) vs (ap)2.

Since 1-loop and 2-loop orders are known [6], we plug their values as counterterms in our
computations (see Fig. 1). At 3-loop we get instead a novel result (see Fig. 2): the 3-loop critical
mass for the scheme defined byn f = 2 Wilson fermions and tree level Symanzik gluonic action. In
Fig. 1 and 2 we plot data from both 324 (blue) and 164 (red) lattices.

2.3 We can get the continuum limit

We take again the quark field renormalization contant as an example. Suppose one has taken
into account the critical mass (so that we are in the chiral limit); one can then tackle the (vector)
component along theγ matrices,Σ̂V (p̂,m̂cr,β−1) in eq. (2.7). Given the hypercubic symmetry of
the lattice regularization, we can make the ansatz

Σ̂V = i∑
µ

γµ p̂µ

(

Σ̂(0)
V + p̂2

µ Σ̂(1)
V + p̂4

µ Σ̂(2)
V + . . .

)

. (2.8)

TheΣ̂(n)
V only depend on scalar invariants. Once one has subtracted the relevant logarithms (as

dictated by the expansion of the anomalous dimension), we are left with quantities1 we can fit to

Σ̂(n)
V = α(n)

1 1+ α(n)
2 ∑

ν
p̂2

ν + α(n)
3 ∑

ν
p̂4

ν + α(n)
4 ∑

ν 6=ρ
p̂2

ν p̂2
ρ +O(a6). (2.9)

The only finite contribution in the continuum limit isα(0)
1 . We can get it by fitting our data

to the previous formula. In Fig. 3 we show an example of such a fit (at 1-loop; keep in mind that
there is no log in this case). The analytical result is known [7] and, as one can see, it is correctly
reproduced. Notice that the point associated to the lowest momentum is missed by the fit (actually,
it has not even been taken into account). In Fig. 4 we present data from both 324 (blue) and 164

(red) lattices. Notice that the point associated to the lowest momentum appears to be problematic
also in the case of 164 lattice.

1With a slight abuse of notation we useΣ̂(0)
V for both the log-subtracted and the log-unsubtracted quantity.
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Figure 3: 1-loopZq vs. (ap)2 on 324
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Figure 4: 1-loopZq vs. (ap)2 on both 324 (blue)
and 164 (red).

2.4 We can get the infinite volume limit

As we pointed out in [3], things get worse when one inspects quantities for which an anoma-
lous dimension is in place. The very first case we reported in the case of Wilson gluonic action was
just the scalar current. Much the same holds in the present case of tree level Symanzik action. Our
master formula (2.3) at 1-loop reads

Z(1)
q −Z(1)

s = O(1)
s − γ(1)

s L. (2.10)

No log comes fromZq, while γ(1)
s is the 1-loop anomalous dimension for the current. Fig. 5

summarizes all the relevant information for the problem at hand. The red curve is a fit discarding
just the point associated to the lowest momentum and completely misses the right result. The black
curve is a fit discarding a wider interval in the IR; it succeeds in getting the analytical result. Fig. 6
shows how this can be ascribed to a finite size effect: the unsubtracted quantityO(1)

s is plotted for
both a 324 (blue) and a 164 (red) lattice. One can recognize just the same pattern reported in [3] for
the case of the simple plaquette action.
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Figure 5: Z(1)
q − Z(1)

s vs. (ap)2 on 324; refer to
eq. (2.10).
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Figure 6: O(1)
s vs. (ap)2 on both 324 (blue) and

164 (red); refer to eq. (2.10)

A solution to the problem has been put forward and shown to be effective in [8]. On dimen-
sional grounds, one looks for a dependence onpL and sums and subtracts the infinite volume result
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one is interested in. This defines the finite size error∆Σ̂(n)
V (p̂, pL)

Σ̂(n)
V (p̂, pL) = Σ̂(n)

V (p̂,∞)+
(

Σ̂(n)
V (p̂, pL)− Σ̂(n)

V (p̂,∞)
)

= Σ̂(n)
V (p̂,∞)+ ∆Σ̂(n)

V (p̂, pL), (2.11)

so that a better formula to fit is

Σ̂(n)
V (p̂, pL) = α(n)

1 1+ α(n)
2 ∑

ν
p̂2

ν + α(n)
3 ∑

ν
p̂4

ν + α(n)
4

(

∑
ν

p̂2
ν

)2

+ ∆Σ̂(n)
V (p̂, pL)+ . . . (2.12)

This is a useful formula once we realize that in first approximation we can look for the ˆp = 0
value for ∆Σ̂(n)

V (p̂, pL) (we neglect finitea corrections on top of finiteV corrections). We are
thus only left with a function ofpL. This means that we can fit the same correction for the same
(n1,n2,n3,n4) tuple on different lattice sizes:

∆Σ̂(n)
V (p̂, pL) ∼ ∆Σ̂(n)

V (pL) pµL =
2πnµ

L
L = 2πnµ (2.13)

It is useful to go back and inspect again Fig. 3 and Fig. 4: basically, we are saying that the
error on the points associated to the lowest momenta - corresponding to the same(1,1,1,1) tuple -
is in first approximation the same on both 324 (blue points) and 164 (red points).

3. Current status of our computations
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Figure 7: One, two and three loop data forZq andOs. These are unsubtracted data (i.e. logarithms are still
to be subtracted). Data for both 324 (blue) and 164 (red).

6



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
2
2
5

Perturbative vs non-perturbative renormalization: the case of the quark mass Francesco Di Renzo

In Fig. 7 we plot our data for the renormalization of the quarkfield and the scalar current. At
the time of the conference we had in our hands only the final data for two lattice sizes (324 and
164). In the meantime data for 244, 204, and 124 have been collected. We are currently in the final
stage of our analysis,i.e. we are fitting the whole set of data to formulas like eq. (2.12).
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