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1. Introduction

Regularization invariant (RI/MOM) schemes [1] are extrgmuseful for renormalizing matrix
elements in lattice gauge theory. They are simple to impidrfeg arbitrary operators and there
are perturbative calculations, [2] [3], up to three loopatiag RI/MOM toMS. Using momentum
sources, [4], excellent statistical precision is also inle@d. The leading uncertainties are systematic
effects: spontaneous chiral symmetry breaking@) breaking. Chiral symmetry breaking leads
to aé pole, violation of Ward identities and a strong mass depeogén the vertex functions.
Subtracting the condensate term is possible [5], howevdraage in kinematics is sufficient to
suppress almost all of the chiral symmetry breaking effggjtsin [6] the incoming and outgoing
momenta are given the same magnitude and different direcg8o that the momentum transfer is
non-zero and equal in magnitude to the external momentaserhen-exceptional kinematics are
sufficient to suppress spontaneous chiral symmetry brgdkma factor%.

With these improvemeniS(4) symmetry breaking is now the main source of uncertainty. We
propose to use twisted boundary conditions to remove its Tilas immediate impact in reducing
the error on many phenomenologically important parametérare renormalization is a large and
often dominant contribution to the total uncertanity. Iistwork we discuss the quark mass [7] and
kaon bag parameteBx [7, 8, 9], but the technique also has relevance for many RB@UOD cal-
culations, for exampl& — 7t matrix elements [10], distribution amplitudes [11, 12] anclear
form factors [13].

The largest remaining systematic error is perturbativeudllg the simulated momenta must
satisfy the condition,

T\ 2
Moo < P < () (1.1)

The lower bound is for convergence of perturbation theorjlerhe upper is in order to have small
discretization artefacts. We propose to control the diszagon error by continuum extrapolation,
convergence of perturbation theory can then be improvedhmpsing a high momentum scale
before matching. To increase the energy scale while avpidirge lattices we will step scale [14]
and we outline how to do this using RI/MOM renormalization.

2. Twisted Boundary Conditions

On the latticeO(4) symmetry is explicitly broken tdd(4). This means the same quantity
computed using inequivalent momentum directions will hawdfferent Symanzik expansion de-
pending on the direction. Matching the same physical moumergnd the same direction on two
different lattices with this constraint is generally ditflt In order to chose momenta with arbi-
trary magnitude in a given direction we use twisted boundamyditions [15]. Consider Green’s
functions of bilinear operatorg(x)I'q(x), ' is a Dirac matrix. With twisted boundary conditions
the quark field satisfies,

q(x+L) =€%(x). (2.1)

Let §(x) = €5*q(x) with B = 87 This modifies the Dirac operator,

D=(+M)—D=(F+iB+M). (2.2)
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The inverses are related 1§(x,y) = €8*Y)§(x,y). The momentum source method gives us the
Fourier transformed propagatdsz, p), wherep is a Fourier mode and

S B(,2G(z p) = €Y. (2.3)
z
G(z, p) is related tdG(z, p) , the Fourier transformed propagator, by
G(zp) =Y e ®* M5z ™ = e "¥G(z p+B). (2.4)
X

Thus, solving the Dirac equation with a plane wave sourcetaigl B gives the momentum space
propagatoiG(z p+ B). B is arbitrary and so allows arbitrary momentum in any dir@cti
To compute vertex function&r we use,

Gr(py+Bi, P2+ Bp) = Y 1€ P BUG(x, py + By) Tyl e P22V G(y, p, + By). (2.5)
Xy
Nr(p) = (G 1(p1, P1)Gr (1. P2) (G 1(P2, P2)] T 18) (2.6)
1
Ar = Tr(MeR). 2.7)

Pr is a projector[3]. We pickp; = (—1,0,1,0) p2 = (0,1,1,0) to minimizes; pt.

Figure 1 (a) shows the effect of the twisted boundary comattion the data. THe(4) breaking
scatter is removed. We simulate momenta with one oriemtatiw continuously varied magnitude
so that the vertex function is a smooth functionpsf The fact that we have a valid Symanzik
expansion then enables us to take the continuum limit in amiaiguous way by choosing the
same direction on every lattice.

3. Step Scaling with RI/MOM

Twisted boundary conditions mean that we can now study thee gzhysical quantity, at the
same scale with the same Symanzik expansion on any lattios ehables a controlled contin-
uum extrapolation of renormalized quantitigs(O). Using continuum extrapolation to control
discretization effects the majority of the remaining unaiity comes from perturbation theory.

Rather than try to satisfy the window condition 1.1 on a srigttice we consider a series of
lattices of successively descreasing volume and use tbesept up to high energy. On each lattice
we still need to compute vertex functions with small diseagion error. The lower limit on the
momenta is now given by the requirement that we do not resbledinite volume of the lattice.
This gives the step-scaling window condition,

m. 5 2 T\ 2
(E) Lp K (5) (3.2)
By simulating a series of lattices with overlapping scalimgdows we will be able to compute
continuum limit step scaling functions.
Explicitly, on each lattice at a given quark mass we can cdmghe ratio,

Ro(p,a,m) = Aa(p,a,m) _ Zo(p,am)

~ No(p,am)  Za(p,am)’ (3.2)
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Figure 1. (a) The axial(red) and vector (green) verticies computeexaeptional momentum [1] with a
volume source at fixed quark masg = 0.03 on a 18 x 32x 16, B = 2.13 lattice, using 10 configurations
[16]. The red and green points use Fourier modes while the théa uses twisted boundary conditions to
vary the momentum. Twisting removes t¢4) breaking scatter. (b,c,d) The bilinear vertex functions in
the chiral limit computed on feand 24 lattices. All parameters except volume are identical. Thleme
dependence is strongest for the axial and vector curretitsiagh it is still only a fraction of a percent

here/\, is the axial vector vertex function. We use it to divide oubetbr of the field renormaliza-
tion Zg in favour of Z, which can be computed more accurately. The chiral limit is

Zo(a,p) = r!’i)TOZA(p’ a,mRo(p,a,m) (3.3)

All of the scale dependence is in the renormalization conistad so the factor needed to
change the scale fropto sp, wheresis a constant, is

Rﬁ(spv q, m) _ ZO(a7 Sp)

2o(p,sp,a) = lim = . 3.4
oPPA =M Ro(p.am ~ Zo(ap) G4
Continuum extrapolating this gives
: Zo(sp) < /“(Sp) y(x) >
oo(p,sp) = lim Zp(p,sp) = = eX —=dx | . 3.5
o(p.sp) = M Zo(p.5p) = 7 o =&P| | Bx (3-5)
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A series ofn lattices to each raise the scale by a fastgives

(OMS(u)) = (OSMOM(p)) x g(p,sp)... x a5(s" 1p,s"p)

X 1+ cSMOM=MSqy (1) — s“p)] . (3:6)

Hopefully, perturbation theory is well convergent at thstlstep where the scale is large.

3.1 Setting the Scale

In order to set the lattice scale accurately a different dadim of lattice spacing for each
volume is needed. This means that between two successpgethiesame momentusip will be
defined in different ways. The two definitions must be suchtiiey agree in the continuum limit
so that products like3(s"p,s"p)ag ™ (s"p,s™1p) are well defined. We need a family of scale
setting quantitiegq;(a) } that depend on shorter distances as we reduce the volumedresteps.

Snp _ Snp <qn_1>C0nt <qn_1>cont:"m <qn_1(a)>cont (3 7)
(@) o7\ Oh "\ Oh -0\ Gn(a) '

we ensure that scales set on latticesingqg, agree in the continuum with scales set using;.
We consider a sequence of scales, of the same class as theeBeoaie [18]

r2F (rn) = Ch. (3.8)

The Sommer scalg, takesCy = 1.65. Thus a step scaling scheme with scale fastan then be
defined choosing, = s"p andr, = 33 as follows:

e Determined(pp, p1) in continuum limit holdingropg fixed such thatgF(ro) =Cy

o

) in continuum limit holdingr fixed

ol

e DetermineC; = gF(r

e Decreasd by ~ 1 without fine tuning

e Determinea(pi, p2) in continuum limit holdingry p; fixed such thath(rl) =C
2

e DetermineC; = $F(2) in continuum limit holdingr; fixed
1

e Decreasd. by ~
etc...

< Without fine tuning

The guideliner < % should ensure finite volume safety and using the tree levetared po-
tential [19] helps reduce discretization effects. Scatérggin this way will be difficult at short
distances where the potential runs logarithmically howeeseral steps should be possible before
this. To investigate the volume dependence of the vertegtifums themselve we performed mea-
surements of identical operators fn= 2.13 lattices with 18 x 32 x 16 [20] and 24 x 64 x 16
[8] volumes. The results are shown in figure 1 (b,c,d). Theina dependence exists but is much
smaller than the error from scale setting. Although extfagions to infinite volume are possible
they are probably not necessary until the error from settiregscale is reduced significantly.
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4. Results

Full details of our ensembles have been reported elsewhéiejere we show step scaling
functions for quark mass, quark field aBd and comment on several interesting features. Figure
2 (a) shows the step scaling function for the quark mass ifst#h®M scheme [3]. The perturba-
tive and non perturbative results are in quite good agreéntégure 2 (b) shows the quark field
renormalization. At non-zero lattice spacing the perttiviearunning is in the opposite direction
to the measured running. This highlights the dangers ofyamplperturbation theory at fixed lat-
tice spacing. Only in the continuum limit is it guaranteedttherturbation theory will accurately
describe the running at high energy.

Figure 3 shows the step scaling function 8¢ in two schemes [17]. The choice of in-
termediate renormalization scheme greatly affects theeagent with perturbation theory here
SMOM — (g, q) is apparently optimal. Figure 3(b) shows that on our codedtice the perturbative
and non-perturbative running agree better than in the souath. Again this emphasises the danger
of having entangled discretization and perturbative stror
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Figure 2. (a) Step scaling function faZy, in the continuum limit. Details of the continuum limit are in
[16]. In physical units this corresponds to between 2 and 8. Giégh order perturbation theory describes
the running quite well. (b) The step scaling function Zgrfrom 2 to 3 GeV. Note that the continuum limit
flips the direction of the running to agree, at least in sigithwerturbation theory.

5. Conclusions

Volume source, non-exceptional, twisted boundary comditenormalization is seen to give
MOM scheme renormalization constants with very small stigil and systematic errors. There-
fore this will be the preferred method of renormalizing maglements in future RBC-UKQCD
measurements. Further, thanks to the excellent precis@itable, step scaling arbitrary operators
now becomes feasible. We have shown here some promisinghpraty results and are presently
computing step scaling functions more accurately and forenoperators. We believe this can
greatly reduce the uncertainty in matching lattice calboe to perturbation theory.
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Figure 3: Step scaling functioBk from 2 to 3 GeV in two schemes compared to the perturbativeingn
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