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As long as a Higgs boson is not observed, the design of alternatives for electroweak symmetry

breaking remains of interest. The question addressed here is whether there are possibly dynamical

mechanisms, which deconfine SU(2) at zero temperature and generate a massive vector boson

triplet. Results for a model with joint local U(2) transformations of SU(2) and U(1) vector fields

are presented in a limit, which does not involve any unobserved fields.
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1. Introduction

In Euclidean field theory notation the action of the electroweak gauge part of the standard
model reads

S =
∫

d4xLew, Lew = −1
4

Fem
µν Fem

µν −
1
2

TrFb
µνFb

µν , (1.1)

Fem
µν = ∂µaν −∂νaµ , Fb

µν = ∂µBν −∂νBµ + igb
[
Bµ ,Bν

]
, (1.2)

wherea′µ are U(1) andBµ are SU(2) gauge fields.

Typical textbook introductions of the standard model emphasize at this point that the theory
contains four massless gauge bosons and introduce the Higgs mechanism as a vehicle to modify
the theory so that only one gauge boson, the photon, stays massless. Such presentations reflect that
the introduction of the Higgs particle in electroweak interactions [1] preceded our non-perturbative
understanding of non-Abelian gauge theories. In fact, massless gluons are not in the physical
spectrum of (1.1).

The self interaction due to the commutator (1.2) generates dynamically a non-perturbative
mass gap, and the SU(2) spectrum consists of massive glueballs. The lightest glueball can be used
to set a mass scale. Choosing for it, e.g., 80 GeV and coupling fermions is admissible. This
does not constitute an ansatz for an electroweak theory by two main reasons: The SU(2) glueball
spectrum [2] is not what is wanted (e.g., masses of spin 0 and 2 states are lower than for spin 1),
and, fermions would be confined, which is not the case. Coupling a Higgs field in the usual way
causes a deconfining phase transition, so that fermions are liberated, a photon stays massless and
glueballs break up into elementary massive vector bosons. Such a confinement-Higgs transition
has indeed been observed in pioneering lattice gauge theory (LGT) investigations [3].

This mass generation for theW boson through spontaneous symmetry breaking is explicit in
perturbation theory. Are there possibly alternative dynamical mechanisms, which do not involve
new physics? The model considered here is motivated by the deconfining phase transition of pure
U(1) LGT with the Wilson action [4], which is demonstrated in Fig.1 with Polyakov loop scatter
plots for coupling constants in the confined (βe = 0.9) and Coulomb (βe = 1.1) phase. In the
Coulomb phase the effective potential of the Polyakov loop is similar to that of a Higgs field.

2. SU(2) alignment

Motivated by the behavior of the U(1) Polyakov loop in the Coulomb phase, we add to the
U(1) and SU(2) Wilson actions

Sadd = ∑
µν

Sadd
µν , Sadd

µν =
λ

2
ReTr

[
Uµ(x)Vν(x+ µ̂a)U∗

µ(x+ ν̂a)V∗
ν (x)

]
(2.1)

with U ∈ U(1) taken as diagonal 2× 2 matrices andV ∈ SU(2). For aligned U(1) matrices the
SU(2) matrices become aligned too and for large enoughλ one may expect a SU(2) deconfining
phase transition due to breaking of the Z2 center symmetry.
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Figure 1: Scatter plot for U(1) Polyakov loops with the Wilson action on a 124 lattice atβe = 0.9 (center)
andβe = 1.1 (ring),βe = 1/g2

e.

This interaction can be obtained in the London limit (κ →∞) from the following gauge invari-
ant expression:

Sadd
µν = κ Tr [(Φ+Φ−1)2]}+

λ

2
ReTr{Uµ(x)U∗

µ(x+ ν̂a) (2.2)

[Φ+(x+ µ̂a)Vν(x+ µ̂a)Φ(x+ µ̂a+ ν̂a)] [Φ+(x)Vν(x)Φ(x+ ν̂a)]+}

whereΦ is a 2×2 matrix scalar field that is charged with respect toU(1) andSU(2). The gauge
transformations areΦ→ e−iαgΦ, whereg∈ SU(2), eiα ∈U(1). The vacuum value ofΦ is a pure
gaugeΦ = e−iαg. To obtain (2.1) we perform the the London limit for the potential and fix the
gauge toΦ = 1. Similar results are expected from simulations at sufficiently large finiteκ values.

In the classical continuum limita→ 0 thea4 contributions ofSadd
µν (after gauge fixing) give

Ladd = −λ

2
Tr

(
Fadd

µν Fadd
µν

)
, Fadd

µν = ga∂µAν −gb∂νBµ (2.3)

whereAµ = aµ1 is the photon andBµ the gluon field. The interaction leads to similarities with the
SU(2) Higgs model. However, there is no explicit mass term∼ BµBµ which would be obtained by
applying the London limit to conventional Higgs coupling.

Our Monte Carlo procedure proposes the usual U(1) and SU(2) changes. For the update of
a SU(2) matrixVµ(n) we need the contribution to the action, which comes from the summed up
staples (using now lattice unitsa = 1)

Vt,µ(n) =
βb

2 ∑
ν 6=µ

[
Vν(n+ µ̂)V∗

µ (n+ ν̂)V∗
ν (n) +V∗

ν (n+ µ̂− ν̂)V∗
µ (n− ν̂)Vν(n− ν̂)

]
+

λ

2 ∑
ν

[
Uν(n+ µ̂)V∗

µ (n+ ν̂)U∗
ν (n) +U∗

ν (n+ µ̂− ν̂)V∗
µ (n− ν̂)Uν(n− ν̂)

]
,
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Figure 2: Plaquette expectation values on a 124 lattice as function ofλ (ordered o and disordered d starts).

and correspondingly for the U(1) matricesUµ(n). This is well suited for updates with a biased
Metropolis-heatbath algorithm [5], which gives acceptance rates larger than 95% for U(1) as well
as for SU(2) updates in the range of parameters considered.

3. Numerical results

Simulations reported here are atβe = 1.1 in the Coulomb phase of pure U(1) LGT andβb = 2.3
in the scaling region of pure SU(2) LGT. Inλ a strong first-order transition is found as shown in
Fig. 2 for plaquette expectation values, which are normalized to one for unit matrices.

SU(2) and U(1) string tensions from Creutz ratios [6] of Wilson loops up to size 5×5 as shown
in Fig. 3, as well as Polyakov loop histograms (not shown), support a SU(2) deconfining phase
transition, while U(1) is deconfined on both sides with a discontinuity in the Coulomb potential.

Relying on the dispersion relation, the photon mass is estimated [7] from fits to correlation
functions for photon energyEk1, k1 = 2π/N estimates onN3Nt , Nt � N lattices, which are shown
in Fig. 4. Their analysis yields

m2
photon= E2

k1
−4 sin2(k1/2)→ 0 (3.1)

with increasingN on both sides of the transition.

Other mass spectrum estimates are obtained from fits to zero-momentum correlations func-
tions. Glueball correlations are very noisy, best for 0+, and signals are only followed up to distance
2 in the disordered phase and even worse (higher masses) in the ordered phase.

The massmW of the vector boson triplet is estimated from correlations of the operator

Vi,µ(x) = −i Tr
[
τi Vµ(x)

]
. (3.2)
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Figure 3: SU(2) and U(1) string tensions on a 124 lattice as function ofλ (disordered d and ordered o starts).
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Figure 4: Data and fits for photon energyEk1 correlation functions. The up-down order of the curves agrees
with that of the labeling.
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Figure 5: Momentum zero correlation function and fit formW mass estimate atλ = 0.9 on a 12364 lattice.
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Figure 6: Sketch of the glueball and vector boson mass spectrum.

They are zero in the disordered phase and strong in the ordered phase. For our largest lattice Fig.5
shows them atλ = 0.9 (ordered start). The signal is beautifully strong and can be followed beyond
distancet = 20a. A sketch of the glueball andW mass spectrum as function ofλ is given in Fig.6.

4. Summary and conclusions

To the extent that similar results hold also for finite (sufficiently large) values ofκ, we have
constructed a gauge-invariant U(1)⊗SU(2) theory, which exhibits a zero-temperature deconfining
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transition and generates aW boson mass dynamically. However, by dimensional reasons this theory
with scalar bosons has presumably no physical quantum continuum limit.

In the London limit the U(1)⊗SU(2) scalar matrix fieldΦ becomes unphysical, because it
takes its vacuum value and does not fluctuate, while its gauge transformations survive. In the
present model they can be absorbed by extending the gauge transformations of the U(1) and SU(2)
vector fields into a local U(2)=U(1)⊗SU(2) symmetry

Uµ(x) → e−iα(x) g(x)Uµ(x)g−1(x+ µ̂a)eiα(x+µ̂a) ,

Vµ(x) → e−iα(x) g(x)Vµ(x)g−1(x+ µ̂a)eiα(x+µ̂a) ,

which was first proposed in [8, 9].
In this way all remnants of the scalar field disappear without destroying invariance of the

action, so that a local U(2) invariance of (fermionic) matter fields can be kept. After elimination
of the scalar bosons the additional action term is now (as desired) dimensionless and it remains
to clarify whether this allows for a quantum continuum limit. The situation is kind of opposite to
the SU(2) Higgs model, where the interaction term is dimensionless as long as the scalar boson is
involved, but acquires a dimension in the London limit.
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