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We point out that in quantum systems with many degrees of freedom the quantum entanglement of
inaccessible regions generates a back-reaction which may modify the dynamics of the system. In
particular we argue that in 1+1 dimensional quantum systems described by conformal field theory
(CFT) the back-reaction of the inaccessible subsystems has the same effect as the coupling to 2D
quantum gravity. Numerical experiments on critical 2D Ising models show that the universality
class is modified by such a back-reaction and that the new critical exponents agree with those
predicted by the formula of Knizhnik, Polyakov and Zamolodchikov.
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1. Introduction

Long time ago Unruh [1] pointed out that, in the context of relativistic quantum field theory,
an accelerated detector in flat spacetime should detect quanta even if the vacuum is in a pure state.
This phenomenon comes from the fact that such a detector cannot see the whole spacetime: there
is a region that classically cannot influence or be influenced by events outside it. To describe
the quantum state as seen by such a detector, we should trace over the degrees of freedom in the
unseen region of the spacetime. This generates a mixed state describing the detector measurements,
with entropy -hence quanta- coming from the entanglement of the inaccessible region. Such an
exchange of quanta between the accelerated detector and the inaccessible region of the spacetime
defines a sort of interaction entirely generated by quantum entanglement. In this talk I would like
to outline a general method to study this interaction in lattice field theory. This method is then
applied to quantum spin chains described at criticality by a CFT. By applying renormalization
group arguments one is led to conclude that the interaction produced by quantum entanglement
is equivalent to the coupling of the system to 2D quantum gravity. This conclusion is supported
by Monte Carlo calculations on critical Ising model, where the measured critical exponents, once
this sort of interaction is switched on, turn out to agree with those predicted by the formula of
Kniszhnik, Polyakov and Zamolodchikov in the context of quantum gravity.

2. Reduced density matrix and Rényi entropy

A complete description of the information available to an observer who has access only to a
subsystem A of a system in the fundamental state |Ψ〉 is encoded in the reduced density matrix

ρA = tr B |Ψ〉〈Ψ| (2.1)

obtained by tracing over the degrees of freedom of the complement of A, denoted with B, inacces-
sible to the observer. The quantities which are commonly used to measure the entanglement are
expressed in terms of trρn

A. For instance, the Tsallis entropy is TA(n) = (trρn
A− 1)/(1− n), the

Rényi entropy is RA(n) = log trρn
A/(1−n) and the entanglement entropy can be written as the limit

SA = limn→1 TA(n) = limn→1 RA(n) =−trρA logρA.
In quantum field theory (QFT) the quantity trρn

A for integer n can be computed without ex-
plicit knowledge of the ground state through the so-called replica method [2, 3, 4]. Following this
procedure the partition function Zn of n copies (or replicas) of d dimensional quantum system is
computed in the standard way by doing the functional integration of the corresponding Euclidean
classical system in d +1 dimensions. We have

Zn =
∫ n

∏
k=1

D [φk]e−∑
n
k=1 S[φk] , (2.2)

where φk is a field configuration associated to the kth copy and S[φ ] is the Euclidean action; trρn
A

can be written as the vacuum expectation value of a suitable observable O defined on this larger
system composed of n replicas of the original system. The subsystem B establishes a process of
transferring information among the n replicas through a specific coupling: the lattice links coming
out of nodes of B and directed into the (Euclidean) time direction τ cyclically connect the copy k
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with the copy k+1 [3, 4]. Let us denote with SB[φ1,φ2, . . . ,φn] the corresponding coupled action.
It is easy to see that the quantity

O= e−
(

S(n)B [φ1,φ2,...,φn]−∑
n
k=1 S[φk]

)
, (2.3)

has the desired property [5]. In fact its vacuum expectation value in the system of n independent
copies of the original system is

〈O〉n =
∫

∏
n
k=1 DφkOe−S[φk]

Zn =

∫
∏

n
k=1 Dφk e−S(n)B

Zn =
Zn(A)

Zn = trρ
n
A . (2.4)

Zn(A) is the partition function of the system in the n coupled replicas.

3. The back-reaction of the inaccessible subsystems

Contrarily to the usual approaches to quantum entanglement, we treat the accessible subsystem
A (or, equivalently, B) as a dynamical object that interacts with the rest of the system, so that its form
and position is not constant in the time, but is determined by its interaction with the background.
A way to implement this dynamics in a stationary system is to put it in equilibrium with the Gibbs’
ensemble {A} of all possible subsystems.

In lattice field theories the recipe is very simple. Each stack of n links associated to the nodes
x and y in the n replicas is set in two possible states. In the state ‘A’ each link of the stack connects
points of the same replica while in the state ‘B’ it connects them cyclically; the links in the state ‘B’
single out the subsystem B. It is sometimes convenient to to define a slightly generalized coupling
among the n replicas, relaxing the constraint of the B subsystems to lie on a constant time slice
and treating spatial and temporal links in the same way. An advantage of this more general setting
is that it is easy to show that the coupled system of n replicas is endowed with an important local
symmetry: flipping from ‘A’ to ‘B’ or vice versa, the state of all links intersecting an arbitrary
closed d dimensional manifold keeps invariant the partition function [5]. A direct consequence of
such a symmetry is that one can demonstrate that not only the entanglement entropy but all the
thermodynamic functions depend only on the boundary of B [5] . In order to promote accessible
subsystems to dynamical variables one has simply to sum over all possible assignments of the states
‘A’ and ‘B’ to the lattice links, so the partition function of our coupled system of n replicas can be
written as

Zn = ∑
{G}

∫ n

∏
k=1

Dφ
(k)e−S(n)B (3.1)

where G is the subgraph of links which are set in the state ‘B’ and the summation is over all
subgraphs.

In this manner we obtain a general method which transforms whatever QFT theory in a new,
non-trivial QFT generated by its interaction with the set of the possible non accessible subsystems.
Being a completely general recipe one could suspect that the modified theory could describe the
coupling of the original QFT with some universal interaction. We shall argue that in the case of
2D CFT such a modification describes its coupling to 2D quantum gravity. To such a purpose
we specialize now to the case where the system in question is a quantum spin chain described at
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A B B BA A A

Figure 1: Partition of the spin chain in two arbitrary subsets A and B.

criticality by a CFT. The subsystem B is now an arbitrary subset of nodes of the chain (see Fig. 1);
its two dimensional lattice description (3.1) is a discretized version of a n−sheeted covering of the
plane, where the dual G̃ of the subgraph G is formed by the set of cuts connecting these sheets.
The local symmetry mentioned above turns out to express the invariance of the system under the
addition (or the removal) of closed cuts or under continuous deformations of open cuts with fixed
ends. Then the sum over the subgraphs G which select the inaccessible subsystems is equivalent to
a special sum over the moduli and the genera of the Riemann surfaces described by the n− sheeted
covering of the plane. This is a first clue that the sum (3.1) over the ensemble of inaccessible
subsystems is somehow related to 2D quantum gravity.

Another, much stronger, indication comes from the following renormalization group argument.
In a CFT defined on a n−sheeted covering of the plane, the conical singularities located at the
branch points are associated to primary fields Φn(z, z̄) of scaling dimensions [6]

∆n = ∆̄n =
c

24

(
1− 1

n2

)
, (3.2)

where c is the central charge. As a consequence, for not too large c the conical singularities are
relevant perturbations of the CFT. This means that, if we describe the critical system on the n-
sheeted covering of the plane with the action

S = S∗+µ

∫
Φn(z, z̄)d2z , (3.3)

where S∗ is the CFT action describing the unperturbed critical system and µ is the chemical po-
tential which controls the appearance of conical singularities, these relevant perturbations drive the
system away form the critical point. According to (3.2) any CFT with c > 0 is unstable whenever
perturbed with Φn. This fact, combined with the c- theorem [7], restricts the renormalization group
flows into fixed points with c = 0. For generic values of µ these are trivial fixed points correspond-
ing to massive theories. However for a suitable value of µ the system may be critical, as we shall
see in the last section. Then in the CFT describing this infrared fixed point the net effect of the
dynamical conical singularities associated to the inaccessible subsystems is the complete screening
of the matter central charge. This is precisely what happens when CFT is coupled to 2D quantum
gravity, i.e. the sum over the conical singularities with the rules dictated by the quest of equilibrium
with the ensemble of the inaccessible subsystems has the same effect as the sum over geometries
with the rules of quantum gravity.

4. The KPZ relations

The Knizhnik-Polyakov-Zamolodchikov (KPZ) formula [8, 9] establishes the relation between
the bare (∆o) and the dressed (∆) scaling dimensions of a primary field of a CFT when the theory
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is coupled to quantum gravity:

∆
o = ∆+

γ2

4
∆(∆−1), γ =

√
25− c

6
−
√

1− c
6

, (4.1)

where c is the central charge. In the minimal (p,q) models with c = 1−6(p−q)2/pq the spectrum
of the bare scaling dimensions ∆o is very well known (see for instance Ref. [9]). A lesser known
fact is that in these minimal models it is possible to establish a one-to-one correspondence ∆o

` ↔ `

between the allowed values of ∆o and the integers ` which cannot be written as ps+q t with s and
t non negative integers. In other words, the integers ` form precisely the set of holes of the infinite
sequence [10]

ps+q t , s, t = 0,1,2,3, . . . . (4.2)

For instance, in the critical Ising model, corresponding to (3,4), the holes of (4.2) are at `= 1,2,5,
corresponding to the identity operator with ∆o

1 = 0, to the spin operator with ∆o
2 ≡ ∆o

σ = 1
16 and to

the energy operator with ∆o
5 ≡ ∆o

ε =
1
2 . More generally we have

∆
o
` =

`2− (p−q)2

(p+q)2− (p−q)2 , ∆` =
`−|p−q|

p+q−|p−q|
, (4.3)

where in the second equality we used the KPZ formula (4.1). It is interesting to note that the
gravitational dressing of the scaling dimensions leads to a new set of critical exponents which are
still rational.

In order to support our conjecture that the back-reaction of the inaccessible subsystems in 2D
quantum theories has the same effect as the coupling to 2D quantum gravity we have to prove first
that the the system on the multi-sheet covering of the plane has at least a critical point and then
that the critical exponents of the associated universality class are the gravitationally dressed ones
defined in (4.3). We shall see it in the next section by a Monte Carlo simulation of the Ising model,
where we expect ∆σ = 1

6 and ∆ε =
2
3 .

5. A Monte Carlo calculation

We simulated a quantum spin- 1
2 chain in a transverse field by using a 2D Ising model in a

square lattice of size L×L at the self-dual point with n = 2, . . . ,5 replicas. We updated the Ising
part of the model with a standard non-local cluster algorithm. In order to control the number of
branch points we introduced a fugacity z and the update of {A} was obtained with a heat bath
method. The main results are reported in [11].

In a first set of numerical experiments the ensemble {A} was taken on a 1D slice and on the
same slice we measured the spin correlators at a fixed distance L/s with s = 4 or s = 8. Varying the
total size from L to L′ = λ L and taking the ratio of these correlators we got a power law λ−x which
allows to estimate the critical exponent x. Since {A} affected only a one dimensional boundary of
our system, this remained critical even at z 6= 0. A typical result of this calculation is reported in
figure 2: as z varies from 0 to 1, λ−x drops from the expected value of the pure Ising model with
x = 4∆o

σ to a new scaling dimension. According to the previous discussion, the expected value
is the one suggested by KPZ formula. As sometimes it happens in critical systems, the observed
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Figure 2: Plot of the critical ratio λ−x as a function of the fugacity z in the 1D setup with two replicas.
The two arrows represent the expected values for the pure system and the system coupled with the set of
accessible subsystems.
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Figure 3: Plot of the difference of the density of conical singularities for lattice of different sizes. d(L) is
such a density in square box L×L in the case of two replicas.
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value of x differs by an integer with respect to the expected value. Precisely we found x = 4∆σ +1
for n = 2 and x = 4∆σ +2 for n≥ 3.

In a second set of numerical experiments we simulated instead a truly two dimensional system,
with no limitations on the location of cuts representing the inaccessible subsystems. In this new
setting the gas of conical singularities is spread in the bulk and drives the system away from the
critical point of the pure system. There is however a critical value zc of the fugacity at which the
system undergoes a second order phase transition which is presumably in the same universality
class of the 1D quantum system described above. In order to locate such a critical value we studied
finite size effects on the density of conical singularities. A typical plot of these finite size effects
is drawn in figure 3. A finer estimation of zc was obtained by requiring a power-like behavior in
the spin correlators. The final estimate was zc = 0.01127(1). Measuring the spin correlator at this
value of z it turns out that the scaling dimension of the spin operator, within the numerical accuracy,
the one of the 2D quantum gravity (see the figure 2 of [11]).

Likewise, the scaling dimensions of the energy operator turn out to be the KPZ value ∆ε =
2
3 .

In order to extract this critical exponent, we measured the vacuum expectation value of the link
operator 〈link〉. This quantity is expected to have the following functional form at criticality

〈link〉= e0 + e1/L2∆ε + e2/L2∆ε+1 + . . . (5.1)

The fit parameters e0 = 1.42467(5), e1 = −3.94(7) and e2 = 257(5) fit accurately the data with a
χ2/d.o. f of 0.6, as shown in figure 3 of [11].

In conclusion, we found that allowing the inaccessible subsystems to back-react has the same
effect, in a 1D quantum system, as coupling it to 2D quantum gravity. The numerical algorithm
used to update the geometry is new and it involves, besides a sum over the moduli of Riemann
surfaces, also a sum over genera. This is very different from the standard appoach to 2D quantum
gravity with dynamical triangulations, where the genus is kept fixed [12].
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