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1. Introduction

The use of “partially quenched” QCD (PQQCD), in which valence and sea quark masses
are varied independently, has become common practice in large-scale computations of hadronic
quantities from QCD using lattice methods. This usefulnessarises from the following observations:

1. Sea quark masses are, by definition, the quark masses that go into the generation of dynam-
ical gauge field configurations on which hadronic quantitiesare evaluated. Valence quark
masses are, by definition, the quark masses that go into the operators that are evaluated on
these gauge configurations. Such operators are contractions of quark propagators, which de-
pend on the gauge field configurations. For many applications, it is numerically less expen-
sive to generate quark propagators than gauge field configurations. Given limited resources
it can thus be advantageous to generate data for many values of the valence quark masses,
using configurations depending on only a limited number of sea quark mass values.

2. PQQCD with a given number of sea quarks contains full QCD with the same set of sea
quarks [1]. It follows that the low-energy constants (LECs)of the low-energy effective the-
ory are those of the real world, because by construction, these LECs are independent of the
quark masses [2].1 For the case of unquenched QCD, this low-energy theory is chiral pertur-
bation theory (ChPT), which provides a systematic expansion in (light) quark masses, with
coefficients characterized by these LECs.

3. On the lattice, PQQCD can be generalized to “mixed-action” QCD, in which not only va-
lence and sea quark masses are independently chosen, but also the discretization of the Dirac
operator is chosen independently in the sea and valence sectors of the theory. This is a gener-
alization in the sense that the continuum limit of such a lattice theory is described by PQQCD
[3].

In order to apply these ideas, one needs the correct effective theory for PQQCD,i.e., one
needs the partially quenched version of ChPT (PQChPT) [4]. While it is relatively straightforward
to extend ChPT to the partially quenched case, it is less clear than in the unquenched case whether
indeed PQChPT is the correct effective theory for PQQCD. This is because PQQCD violates a
number of basic properties of a healthy quantum field theory on which arguments that ChPT is the
correct effective theory for unquenched QCD rely. This follows from the definition of PQQCD as
a euclidean path integral that includes an integral over ghost quarks, which have the same quantum
numbers as the valence quarks, but the opposite (and thus “wrong”) statistics.

For many field theories, the path integral for a euclidean theory can be expressed in terms of
a transfer matrix. If the field theory is healthy, this transfer matrix is hermitian and bounded, and
contact with the hamiltonian formulation of the theory can be made.2 But if the theory contains
fields with the wrong statistics, it is not clear what properties of such a construction survive.

In Ref. [5], the validity of ChPT as a systematic low-energy effective theory for the Goldstone
sector of QCD was conjectured to follow from the basic properties of a healthy quantum field

1They do depend on the number of sea quark flavors.
2Of course. quantum field theories exist which are believed tobe healthy, but for which no transfer matrix can easily

be constructed.
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theory: analyticity, unitarity, cluster decomposition, and symmetry. Stated differently, theS-matrix
calculated with the most general local lagrangian consistent with a certain symmetry group was
conjectured to be the most general possibleS-matrix consistent with these basic properties. This
was then used as a starting point for the systematic development of ChPT as an expansion ofS-
matrix elements in terms of the pion momenta, following a well-defined power-counting scheme.
The reliance of this argument on unitarity, though, appearsto be a fundamental difficulty in trying
to extend it to the partially quenched case, which is certainly not unitary.

An alternative justification for ChPT as the low-energy effective theory for QCD was presented
in Ref. [6]. The argument detailed there was based on locality and clustering of the underlying the-
ory of unquenched QCD, as well as its symmetries. Locality and clustering guarantee the existence
of vertices in the effective theory that are independent of the correlation functions in which they
appear, and, consequently, the existence of a loop expansion. This approach seems more fruitful for
PQQCD than that of Ref. [5]. By construction, PQQCD is local.It is less clear that it also satisfies
the cluster property, but numerical evidence suggests thatthat is indeed the case, because euclidean
correlation functions are observed to decay exponentiallyin distance (up to possible nonstandard
powers, which come from the characteristic double poles [1,7] in the theory).

The first requirement for the chiral theory of PQQCD is, of course, the dynamical breaking
of chiral symmetry in the theory with massless quarks. The Goldstone bosons associated with
this breaking provide the low-energy degrees of freedom forthe low-energy effective theory. It
was argued in Ref. [7] that chiral symmetry must also be broken in PQQCD. The argument is
that this must happen in the sea sector of that theory, because it is identical to unquenched QCD.
This follows, since, by construction, the valence (and ghost) quarks are not part of the dynamics.
Goldstone bosons corresponding to pions made only out of seaquarks thus have to be present
in the partially quenched theory. Furthermore, the vectorlike partially quenched symmetries that
relate sea and valence quarks then imply that there also haveto be Goldstone excitations in the
valence and ghost sectors, thus providing the necessary degrees of freedom for the construction of
PQChPT.3

The key outstanding issue for the justification of PQChPT as the correct chiral theory for
PQQCD therefore seems to be the question of whether PQQCD obeys the clustering property. Here
we begin an investigation into the clustering property of PQQCD by considering the construction
of a transfer matrix for PQQCD. We start with the ghost sector, which is the ultimate source for the
nonstandard features of the partially quenched theory.

2. Staggered ghosts

PQQCD contains three types of quarks: sea quarks, valence quarks, and ghost quarks, which
have the same masses as the valence quarks, but opposite statistics. Because of this quark content,
the complete fermion determinant of the partially quenchedtheory is just that coming from the sea
sector, while the valence and ghost determinants cancel each other.

Since ghost quarks violate spin-statistics, we expect thatobstructions to the existence of a
well-behaved transfer matrix would originate from this sector of the theory. We therefore consider

3These vectorlike symmetries are not spontaneously broken [8].
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a theory of bosonic staggered quarks, in an arbitrary gauge field background.4 If we choose

S = ∑
x,y

χ†(x)D(x,y)χ(y)+∑
x

mχ†(x)χ(x) (2.1)

= ∑
x

{

1
2∑

µ
ηµ(x)

(

χ†(x)Uµ(x)χ(x+µ)− χ†(x+µ)U†
µ(x)χ(x)

)

+mχ†(x)χ(x)

}

,

with
ηµ(x) = (−1)x1+...+xµ−1 , (2.2)

then
Z =

∫

Dχ†Dχ exp(−S) (2.3)

is convergent form > 0, because the staggered Dirac operatorD is anti-hermitian. The fieldχ is
bosonic,i.e., it is ac-number valued staggered quark field. Of course,S exhibits the same species
doubling as the normal staggered quark action, and therefore we employ a two time-slice method
for constructing the transfer matrix representation ofZ, guided by the construction in Ref. [10].

We split χ into its real and imaginary parts by definingχ(x) = η4(x)φ1(x)+ iφ2(x), and then
identify

t = 2k : φ1(~x, t) = Φ1,k(~x) , φ2(~x, t) =−Φ2,k(~x) , (2.4)

t = 2k+1 : φ1(~x, t) = Π2,k(~x) , φ2(~x, t) = Π1,k(~x) .

Then, if the extension of the (periodic) lattice in the time direction isT (which we take to be even),
the partition function can be written as the trace of theT/2-th power of a transfer matrix,

Z(U ) = Tr

(

T/2

∏
k=1

T̂k(U )

)

, (2.5)

in which
T̂k(U ) = e−Φ̂1H−[U (2(k+1)]Φ̂2 e−Π̂2H+[U (2k+1)]Π̂1 . (2.6)

HereH± are defined through

Ψ1H±[U (t)]Ψ2 = ∑
~x

{

±∑
j

iη ′
j(~x)

(

Ψ1(~x) ReU j(~x, t)Ψ2(~x+~j)+ (1↔ 2)
)

(2.7)

−∑
j

iη j(~x)
(

Ψ1(~x) Im U j(~x, t)Ψ1(~x+~j)− (1→ 2)
)

+m
(

Ψ1(~x)
2+Ψ2(~x)

2)
}

,

η ′
j(~x) = η j(~x)η4(~x) ,

and the hermitian operatorŝΦ1,2 andΠ̂1,2 satisfy the commutation rules

[Φ̂a(~x),Π̂b(~y)] = iδ (~x−~y)δab . (2.8)

4We use staggered quarks here because the nonperturbative definition of PQQCD with staggered quarks is straight-
forward. For other types of quarks, see Ref. [4] and refs. therein, in particular Ref. [9].
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FromT̂ , we can define a hamiltonian in the limit in which the temporallattice spacing goes to zero;
with

Ĥ[U (t)] = lim
at→0

− logT̂k(U )/(2at ) , (2.9)

Ĥ[U (t)] = Ĥ1+ iĤ2[U (t)] ,

Ĥ1 =
1
2

m∑
~x

(

Π̂2
1(~x)+ Π̂2

2(~x)+ Φ̂2
1(~x)+ Φ̂2

2(~x)
)

,

Ĥ2[U (t)] =
1
2 ∑
~x, j

{

η ′
j(~x)

(

Π̂2(~x) ReU j(~x, t)Π̂1(~x+~j)− Φ̂1(~x) ReU j(~x, t)Φ̂2(~x+~j)
)

−η j(~x)
(

−Π̂1(~x) Im U j(~x, t)Π̂1(~x+~j)+ Φ̂1(~x) Im U j(~x, t)Φ̂1(~x+~j)
)

+(1↔ 2)

}

.

Both Ĥ1 andĤ2 are hermitian, and do not commute. Therefore,Ĥ is not hermitian, and not normal.
It follows that the transfer matrix is not hermitian and not positive definite.

Despite these (nonsurprising) conclusions, it is possibleto make progress. Our transfer matrix
factorizes as

T̂k(U ) = T̂1(U )T̂2(U ) , (2.10)

in which T̂1 is the exponential operator withH− andT̂2 is that withH+. Both T̂1 andT̂2 are normal
and bounded. Since the hamiltoniansH− andH+ have a positive real part (the parts proportional
to m):

‖ T̂1,2 ‖≤ 1 , (2.11)

which implies
‖ T̂ ‖≤‖ T̂1 ‖‖ T̂2 ‖≤ 1 , (2.12)

which establishes that all eigenvalues ofT̂ have an absolute value smaller than one.5 It follows
that correlation functions in this theory decay exponentially with distance if the eigenvalueλ0 with
maximal|λ0| is unique. Of course, the construction needs to be extended to the complete partially
quenched theory, but we do not expect any difficulties with the other building blocks of a complete
transfer matrix.

3. Trivial gauge field background

For a trivial gauge field background, it is straightforward to diagonalizeĤ. In terms of canon-
ical creation and annihilation operators, introduced through

Φ1(~x) =

∫

d3k
(2π)3

1√
2

(

a1(~k)+a†
1(−~k)

)

ei~k·~x , (3.1)

Π1(~x) =

∫

d3k
(2π)3

−i√
2

(

a1(~k)−a†
1(−~k)

)

ei~k·~x ,

5This product inequality is satisfied if we use the euclidean norm, which, for a matrixA, is defined as the square-root
of the largest eigenvalue ofA†A.
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Φ2(~x) =

∫

d3k
(2π)3

−i√
2

(

a2(−~k)−a†
2(
~k)
)

ei~k·~x ,

Π2(~x) =

∫

d3k
(2π)3

−1√
2

(

a2(−~k)+a†
2(
~k)
)

ei~k·~x , (3.2)

we find that

Ĥ =
∫

~p

{

m
(

a†
1(~p)a1(~p)+a†

2(~p)a2(~p)
)

+ i∑
j

sin(p j)
(

a1(~p)α ja2(~p)−a†
2(~p)α

ja†
1(~p)

)

}

, (3.3)

with −π/2< p j ≤ π/2. Theα j are anti-hermitian 8×8 Dirac matrices because there are 23 spatial
doublers. (The two doublers in in the time direction appear explicitly.) Now ∑ j sin(p j)α j can be
diagonalized, with eigenvalues

± is(p)≡±i
√

∑
j

sin2(p j) , (3.4)

makingĤ a sum of terms of the form

h(~p) = m
(

a†
1(~p)a1(~p)+a†

2(~p)a2(~p)
)

± s(p)
(

a1(~p)a2(~p)−a†
2(~p)a

†
1(~p)

)

. (3.5)

For each~p, this can be diagonalized with a generalized Bogoliubov transformation [11]:

b1 = cosθ a1−sinθ a†
2 , (3.6)

b2 = cosθ a2−sinθ a†
1 ,

b̃1 = cosθ a†
1+sinθ a2 ,

b̃2 = cosθ a†
2+sinθ a1 ,

where we note that̃bi is not the hermitian conjugate ofbi. With θ = 1
2 tan−1(s/m) this yields

h = E
(

b̃1b1+ b̃2b2
)

, E =
√

m2+ s2 . (3.7)

The operatorsbi andb̃i are annihilation and creation operators, and indeed,Ĥ has complete sets of
left and right eigenstates. The form of the eigenvaluesE are not a surprise: the ghost determinant
should cancel the valence determinant, so we expect the eigenvalues for the ghost hamiltonian to
match those of the valence hamiltonian.

We can also calculate correlation functions in the theory with a trivial background. The two-
point functions in a theory with hamiltonian (3.3) are

〈ai(t)a
†
j(0)〉 = δi j

E +m
2E

e−Et , (3.8)

〈a†
i (t)a j(0)〉 = −δi j

E −m
2E

e−Et ,

〈ai(t)a j(0)〉 = −〈a†
i (t)a

†
j(0)〉= δi+ j,3

s
2E

e−Et .

While these correlation functions exhibit the expected exponential decay, they also clearly show a
violation of unitarity. In a healthy field theory, by inserting a complete set of states between the
operator at timet and the one at time 0, one would conclude that〈a†

i (t)a j(0)〉 has to be nonnegative.
Here this is not the case, because the vacuum bra〈0| defined by〈0|b̃i = 0 is not the conjugate
of the vacuum ket|0〉 defined bybi|0〉 = 0 sinceb̃i is not the hermitian conjugate ofbi. The
results (3.8) also follow directly from a path integral for this hamiltonian, without first performing
the Bogoliubov transformation.
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4. Discussion

In this talk, we took the first, and most important, step toward the construction of a transfer
matrix for PQQCD. We considered PQQCD with staggered fermions, because it is straightforward
to define the ghost sector in that case. The ghost quarks are then “staggered ghosts,”i.e., staggered
quarks with bosonic statistics, and we constructed the transfer matrix for staggered ghosts in an
arbitrary gauge field background. The rest of the construction remains to be done, but we anticipate
that adding the sea and valence parts, as well as the gauge part, to the transfer matrix will be
straightforward.

We then proved that the ghost transfer matrix in an arbitrarygauge field background is bounded
in the sense that the absolute value of its largest eigenvalue is bounded by one. At nonzero quark
mass, correlation functions of ghost quarks are thus expected to decay exponentially, even if they
do not satisfy the positivity properties of a healthy quantum field theory. We would expect this to
carry over to PQQCD as long as that theory has a nonvanishing mass gap. In the case of PQQCD,
the meaning of this would be that there is a unique eigenvalueλ0 of the complete transfer matrix of
the partially quenched theory with|λ0| maximal, while all other eigenvaluesλ satisfy|λ |< |λ0|.

We then checked this in the free ghost theory, in the limit of vanishing temporal lattice spacing.
Indeed, we find that there is a nonzero mass gap, set by the quark massm, and all two-point
functions decay exponentially. This supports the conjecture that the argument of Ref. [6] for the
validity of ChPT can be carried over to the partially quenched case. Already in the free theory we
find violations of unitarity in two-point functions, so it isclear that also PQQCD, and therefore
PQChPT, will suffer from the same disease. However, PQChPT would still be the correct effective
theory for PQQCD at low energy, because the underlying theory is local, and still satisfies cluster
decomposition, despite its nonhermitian transfer matrix.

We thank Michael Ogilvie for helpful discussions.
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