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1. Introduction

The use of “partially quenched” QCD (PQQCD), in which valerand sea quark masses
are varied independently, has become common practicege-Erale computations of hadronic
guantities from QCD using lattice methods. This usefulmeses from the following observations:

1. Sea quark masses are, by definition, the quark massestibghe generation of dynam-
ical gauge field configurations on which hadronic quantities evaluated. Valence quark
masses are, by definition, the quark masses that go into #ratops that are evaluated on
these gauge configurations. Such operators are contractfauark propagators, which de-
pend on the gauge field configurations. For many applicatibisnumerically less expen-
sive to generate quark propagators than gauge field configngsa Given limited resources
it can thus be advantageous to generate data for many vdities ealence quark masses,
using configurations depending on only a limited number afqgark mass values.

2. PQQCD with a given number of sea quarks contains full QCIh whe same set of sea
quarks [1]. It follows that the low-energy constants (LEGE}he low-energy effective the-
ory are those of the real world, because by constructiorseth&Cs are independent of the
quark masses [2].For the case of unquenched QCD, this low-energy theory ialgbértur-
bation theory (ChPT), which provides a systematic expansilight) quark masses, with
coefficients characterized by these LECs.

3. On the lattice, PQQCD can be generalized to “mixed-ati@@D, in which not only va-
lence and sea quark masses are independently chosen,ditliteatiscretization of the Dirac
operator is chosen independently in the sea and valencasetthe theory. This is a gener-
alization in the sense that the continuum limit of such adattheory is described by PQQCD

3].

In order to apply these ideas, one needs the correct effettimory for PQQCDi.e, one
needs the partially quenched version of ChPT (PQCHhPT) [41iléWt is relatively straightforward
to extend ChPT to the partially quenched case, it is less thaa in the unquenched case whether
indeed PQChHPT is the correct effective theory for PQQCDs Thibecause PQQCD violates a
number of basic properties of a healthy quantum field thearywlich arguments that ChPT is the
correct effective theory for unquenched QCD rely. Thisdal from the definition of PQQCD as
a euclidean path integral that includes an integral ovestfyaarks, which have the same quantum
numbers as the valence quarks, but the opposite (and thoagirstatistics.

For many field theories, the path integral for a euclideanrhean be expressed in terms of
a transfer matrix. If the field theory is healthy, this tramrshatrix is hermitian and bounded, and
contact with the hamiltonian formulation of the theory canrbade? But if the theory contains
fields with the wrong statistics, it is not clear what prosriof such a construction survive.

In Ref. [5], the validity of ChPT as a systematic low-enerffeaive theory for the Goldstone
sector of QCD was conjectured to follow from the basic propsrof a healthy quantum field

1They do depend on the number of sea quark flavors.
20f course. quantum field theories exist which are believesktoealthy, but for which no transfer matrix can easily
be constructed.
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theory: analyticity, unitarity, cluster decompositiomdesymmetry. Stated differently, tfgmatrix
calculated with the most general local lagrangian consistéth a certain symmetry group was
conjectured to be the most general possiBlmatrix consistent with these basic properties. This
was then used as a starting point for the systematic developof ChPT as an expansion &f
matrix elements in terms of the pion momenta, following alxdefined power-counting scheme.
The reliance of this argument on unitarity, though, appealse a fundamental difficulty in trying
to extend it to the partially quenched case, which is cdgtaiot unitary.

An alternative justification for ChPT as the low-energy efifiee theory for QCD was presented
in Ref. [6]. The argument detailed there was based on lgcatit clustering of the underlying the-
ory of unquenched QCD, as well as its symmetries. Locality@anstering guarantee the existence
of vertices in the effective theory that are independenthefdorrelation functions in which they
appear, and, consequently, the existence of a loop expariis approach seems more fruitful for
PQQCD than that of Ref. [5]. By construction, PQQCD is lodtis less clear that it also satisfies
the cluster property, but numerical evidence suggestghhaais indeed the case, because euclidean
correlation functions are observed to decay exponentialfistance (up to possible nonstandard
powers, which come from the characteristic double poleg][in the theory).

The first requirement for the chiral theory of PQQCD is, of is&) the dynamical breaking
of chiral symmetry in the theory with massless quarks. Thé&&one bosons associated with
this breaking provide the low-energy degrees of freedonthHerlow-energy effective theory. It
was argued in Ref. [7] that chiral symmetry must also be makePQQCD. The argument is
that this must happen in the sea sector of that theory, bedtissidentical to unquenched QCD.
This follows, since, by construction, the valence (and ghgsarks are not part of the dynamics.
Goldstone bosons corresponding to pions made only out ofjgagks thus have to be present
in the partially quenched theory. Furthermore, the vegmrbartially qguenched symmetries that
relate sea and valence quarks then imply that there alsotbdwe Goldstone excitations in the
valence and ghost sectors, thus providing the necessargasdegf freedom for the construction of
PQChPT

The key outstanding issue for the justification of PQChPThasdorrect chiral theory for
PQQCD therefore seems to be the question of whether PQQGB tieclustering property. Here
we begin an investigation into the clustering property of D by considering the construction
of a transfer matrix for PQQCD. We start with the ghost seettich is the ultimate source for the
nonstandard features of the partially quenched theory.

2. Staggered ghosts

PQQCD contains three types of quarks: sea quarks, valeras&gjand ghost quarks, which
have the same masses as the valence quarks, but opposstecstaBecause of this quark content,
the complete fermion determinant of the partially quendhedry is just that coming from the sea
sector, while the valence and ghost determinants cancklather.

Since ghost quarks violate spin-statistics, we expect abatructions to the existence of a
well-behaved transfer matrix would originate from thistseof the theory. We therefore consider

3These vectorlike symmetries are not spontaneously bra}en |
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a theory of bosonic staggered quarks, in an arbitrary gaetgetfackground. If we choose

S= 3 x"0DeY)X) + T mxT (9x(x) (2.2)
Xy X

-3 {%%nu(X) (X" (UL X (x+ ) = X (x+ UL 0X () +mx T (0 x (X)} )

with

Nu(x) = (=1 (2.2)
then ‘

Z= / Dx'Dx exp(—S) (2.3)

is convergent fom > 0, because the staggered Dirac oper&tas anti-hermitian. The fielg( is
bosonic,i.e, it is ac-number valued staggered quark field. Of cou&exhibits the same species
doubling as the normal staggered quark action, and there@feremploy a two time-slice method
for constructing the transfer matrix representatioZ pfuided by the construction in Ref. [10].

We split x into its real and imaginary parts by definiggdx) = na(x)@.(x) +i@(x), and then
identify

t=2k: (Rl.(x’t) = (DLK(X) ) (pz(x’t) = _q)2,k(x) ) (2.4)
t=2k+1: @Xt)= I_I2,k(z) . @Rt = I_Il,k(z) :

Then, if the extension of the (periodic) lattice in the timeedtion isT (which we take to be even),
the partition function can be written as the trace of Th@-th power of a transfer matrix,

T/2
Z(%)=Tr <|_| Tk(%)> , (2.5)
k=1
in which
T’k(%) _ a1 (U (2(k+1)] D, eflclzéf+[0?/(2k+l)]|:|1 ) (2.6)

Here .77, are defined through

-

WAL U (1) W, = Z{i Y inj®) (ViR ReUj RO+ )+ (14:2))  @27)
X J

-3 in(®) (wl(m ImUj (R, OW1(X+ ) — (1 2))
J

+m(W1(R)%+ W2(%)%) } ,
nj(X) = nj(X)na(x) ,
and the hermitian operato&l,z andI:ILg satisfy the commutation rules

[®a(), Mb(¥)] = i5(X—§)Sap - (2.8)

4We use staggered quarks here because the nonperturbdthigateof PQQCD with staggered quarks is straight-
forward. For other types of quarks, see Ref. [4] and refgethein particular Ref. [9].
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FromT, we can define a hamiltonian in the limit in which the tempdattice spacing goes to zero;
with

H[# ()] = lim —logTk(%)/(2a) , (2.9)

Hy = = mz +|‘|2 %) + (%) + P3(X))

Hg[%(t)]:ZZ{ ( %) ReU; (%, )My (X+]) — ﬁ)l(X)Rer(Y,t)ﬁbz(X’+T)>

=1 ®) (=28 MUy R OALR+ )+ Ba(R) Im U (R ) (R+ 1))

+(1H2)} .

Both H; andH, are hermitian, and do not commute. Therefétds not hermitian, and not normal.
It follows that the transfer matrix is not hermitian and nosjtive definite.
Despite these (nonsurprising) conclusions, it is possibiaake progress. Our transfer matrix
factorizes as
(%) =Tuw)Ta(%) . (2.10)

in which T, is the exponential operator with”. andT, is that with.#,. Both T; andT, are normal
and bounded. Since the hamiltoniag®s. and.7Z;, have a positive real part (the parts proportional
to m):
[T2)<1, (2.11)

which implies

ITI<ITall T2ll<1, (2.12)
which establishes that all eigenvaluesiohave an absolute value smaller than &nk.follows
that correlation functions in this theory decay expondigtiaith distance if the eigenvalugy with
maximal|Ao| is unique. Of course, the construction needs to be exterudibed tcomplete partially

guenched theory, but we do not expect any difficulties withdther building blocks of a complete
transfer matrix.

3. Trivial gauge field background

For a trivial gauge field background, it is straightforwanctitagonalizeH. In terms of canon-
ical creation and annihilation operators, introducedufgio

3 . . -

3R = [ s 5 (a0 al(R) &%, 6.
ok~ - N ik

nl(x):/(zn) f'z( () —al(—K)) &%,

5This product inequality is satisfied if we use the euclideamm which, for a matrix, is defined as the square-root
of the largest eigenvalue & A.
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3, ~ N -
®2l%) = [ s 5 (el =8l &%,
3, . N -
Ma(x) = /(gn‘; \/_; (a0(—R) +a(k)) €%, (3.2)

we find that
H :/r;{m(ai(ﬁ)al(ﬁ)+a£([3)a2(ﬁ)) +i% sin(p;) (al(ﬁ)ajaz(ﬁ)—a;(ﬁ)ajal(ﬁ»} . (3.3)
]

with —11/2 < p; < r/2. Thea! are anti-hermitian & 8 Dirac matrices because there afespatial
doublers. (The two doublers in in the time direction appeatieitly.) Now ¥ ; sin(pj)orj can be

diagonalized, with eigenvalues
+is(p) = =i /Zsinz(pj) , (3.4)
]

makingH a sum of terms of the form

h(p) = m(al(Pas(p) + al(Ha(p) ) £ s(p) (a(Paz(P) ~al(Hal(p)) . (35)
For eachp, this can be diagonalized with a generalized Bogoliubonsi@mation [11]:
by = cosfa; —sinfa) , (3.6)
b, = cosfa; —sinfal ,
by = cosfal +sinfay,
b, = cosfa}+sinbay ,

where we note thdi is not the hermitian conjugate @f. With 6 = %tan*l(s/m) this yields

h=E (61b1—|- szz) , E=VMm+s2. (3.7)

The operators; andb; are annihilation and creation operators, and indekelias complete sets of
left and right eigenstates. The form of the eigenvaldese not a surprise: the ghost determinant
should cancel the valence determinant, so we expect thavaiges for the ghost hamiltonian to
match those of the valence hamiltonian.

We can also calculate correlation functions in the theoh waitrivial background. The two-
point functions in a theory with hamiltonian (3.3) are

@®al(0) = & = Me e

2E ’
(@ ()ay(0)) = 3§

E-m g
2E
(@(1)a5(0)) = — (& (1al(0)) = &3 e &

While these correlation functions exhibit the expectedomgntial decay, they also clearly show a
violation of unitarity. In a healthy field theory, by insenj a complete set of states between the
operator at timé¢ and the one at time 0, one would conclude lz\hé(t)aj (0)) has to be nonnegative.
Here this is not the case, because the vacuum(@rdefined by(0O|b; = 0 is not the conjugate
of the vacuum ket0) defined byh;|0) = 0 sinceb; is not the hermitian conjugate &f. The
results (3.8) also follow directly from a path integral fors hamiltonian, without first performing

the Bogoliubov transformation.

(3.8)
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4. Discussion

In this talk, we took the first, and most important, step tare construction of a transfer
matrix for PQQCD. We considered PQQCD with staggered femsjibecause it is straightforward
to define the ghost sector in that case. The ghost quarksearégtaggered ghosts, e, staggered
guarks with bosonic statistics, and we constructed thesteammatrix for staggered ghosts in an
arbitrary gauge field background. The rest of the constinggmains to be done, but we anticipate
that adding the sea and valence parts, as well as the gaugdagdre transfer matrix will be
straightforward.

We then proved that the ghost transfer matrix in an arbitganyge field background is bounded
in the sense that the absolute value of its largest eigemvalbounded by one. At nonzero quark
mass, correlation functions of ghost quarks are thus eggddotdecay exponentially, even if they
do not satisfy the positivity properties of a healthy quamfiield theory. We would expect this to
carry over to PQQCD as long as that theory has a honvanishassg gap. In the case of PQQCD,
the meaning of this would be that there is a unique eigenvajud the complete transfer matrix of
the partially quenched theory withg| maximal, while all other eigenvaluessatisfy|A| < |Aq|.

We then checked this in the free ghost theory, in the limitasfishing temporal lattice spacing.
Indeed, we find that there is a nonzero mass gap, set by th& quessm, and all two-point
functions decay exponentially. This supports the conjecthat the argument of Ref. [6] for the
validity of ChPT can be carried over to the partially queritbase. Already in the free theory we
find violations of unitarity in two-point functions, so it idear that also PQQCD, and therefore
PQChHPT, will suffer from the same disease. However, PQCh&ldhstill be the correct effective
theory for PQQCD at low energy, because the underlying thisdiocal, and still satisfies cluster
decomposition, despite its nonhermitian transfer matrix.

We thank Michael Ogilvie for helpful discussions.
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