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1. Introduction

The gauge-gravity duality][1] has been one of the most important subjesttirig theory over
the past decade. The most typical example is the so-called AdS/CFTpumdence between type
[1B superstring theory oAdS; x S and 4d.4" = 4 U(N) super Yang-Mills theory (SYM). Even in
this case, however, a complete proof of the duality is still missing. In particbkaregion described
by the classical supergravity on the string theory side corresponds stréimgly coupled region in
the planar largeN limit on the SYM side. In order to study the strongly coupled.4d= 4 SYM
from first principles, one needs to have a non-perturbative formulatich as the lattice QCD.
The problem here is that the lattice regularization necessarily breakkatranal symmetry, which
is included in the supersymmetry (SUSY). In order to restore SUSY in théncmm limit, one
generally has to fine-tune parameters in the lattice action. In fact any latticeiltions of 4d
N =4 SYM proposed so far seem to require fine-tuning of at least threenaers[[R].

Since 4d4” = 4 SYM has conformal symmetry, the theoryRhis equivalent to the theory on
R x S through conformal mapping. The novel laryereduction [B] connects the planar lartye-
limit of this theory to a reduced model, which can be obtained by shrinkingthe a point. The
resulting one-dimensional gauge theory with 16 supercharges candiedstly using the Fourier-
mode simulation[J4] as in recent studies of the DO-brane sydem [5]. Tausaw perform Monte
Carlo calculations in 4d4” = 4 SYM respecting SUSY maximally and without fine-tunihg.

In this article we present explicit results for correlation functions of tlprenary operators
(CPOs) in4d4” =4 SYMZ In particular, we find that the two-point and three-point functions agree
with the free theory results up to overall constant factors even at faidpg coupling. Moreover
the ratio of the overall factors agrees with the prediction of the AdS/CFEspondenceé.

2. Large-N reduction for .# =4SYM on Rx S

Let us first discuss the novel largereduction for.# = 4 SYM onRx S°. By collapsing the
S to a point, we obtain the plane wave matrix model (PWMM) or the BMN matrix m(ﬂ]él [9
whose action is given by

Lt [ R oo - T twioe - Tt
SPW—g%W/dttr [Z(DtXM) 4[XM,XN] +2‘-IJ DWW 2‘-!J i [ Xm, W]

B2 2 B Ut

+5 (X6) 7+ g (Xa) "+ THE XX X 15" Wi | (2.1)
Here the parametgris related to the radius & asRg = % and the covariant derivative is defined
by Dy = d —i[A, - ], whereA(t), as well asXy(t) and¥(t), is anN x N hermitian matrix. The
range of indices is given byd M,N <9, 1<, j,k<3and 4< a<9. The model has the S©|4)
symmetry with 16 supercharges.

1see refs.[|6] for proposals for finite.

2See ref.[[r] for some preliminary results on the Wilson loop.

3There are also Monte Carlo studies of the.4d = 4 SYM based on matrix quantum mechanics of 6 bosonic
commuting matrices[[S], which give results consistent with the AdS/CFihfthree-point functions of CPOs.

4Properties of this model at finite temperature are studied at weak co@@] and at strong couplinﬂlZ].
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In fact the model possesses many discrete vacua representing mujtsfutzzres, which are
given explicitly by

X, = MIEE(LS”') ®1k|) with .in' k=N, 2.2)

(r)

wherel;’ are ther-dimensional irreducible representation of the(SlJalgebra[Li(”,L}r)] =

I &jk Ll((r). These vacua preserve the @) symmetry, and are all degenerate.
In order to retrieve the plana” = 4 SYM onR x S*, one has to pick up a particular back-
ground from [2]2), and consider the thedry](2.1) around it. Let usidenthe case

k =k, n|:n+l—v?le forl=1,--- v, (2.3)

and take the largétlimit in such a way that

n . Bk .
K — oo U—>oo,v—>oo7 with AszTflxed. (2.4)

Y

Then the resulting theory is claimef [3] to be equivalentthe planar limit of #" =4 SYM on
R x S® with the 't Hooft coupling constant given by
167K Ghy

Asym = 2PApw(Rg ) = T (2.5)

The above equivalence may be viewed as an extension of theNargdtction [1F], which
asserts that the large-gauge theories can be studied by dimensionally reduced models. The orig-
inal idea for theories compactified on a torus can fail due to the instability df¢hy® symmetric
vacuum of the reduced modgl]16]. This problem is avoided in the noophsal since the PWMM
is a massive theory and the vacuum preserves the maximal SUSY. Sindarihe Ipnit is taken
in the reduced model, the instanton transition to other vacua and the “fuzziofethe spheres
are suppressed. Viewed as a regularization oftlie= 4 SYM onR x S%, the present formula-
tion respects the maximal $R|4) symmetry (with 16 supercharges) of the PWMM, and in the
limit (2.4) the symmetry is expected to enhance to the full superconformé2,8l4) symmetry
(with 32 supercharges). Since any kind of UV regularization breaksgh@®rmal symmetry, this
regularization is optimal from the viewpoint of preserving SUSY.

3. Correlation functionsin4d .4 =4 SYM
As simple examples of /2 BPS operators, let us consider the CPOs given by
OF (%) = Ty 1t (XEXE - XE () . (3.1)

whereTy, .5, IS @ Symmetric traceless tensor axfd represents the six scalars in 44 = 4 SYM
onR*. Thanks to the conformal symmetry, the forms of two-point and three-functions of the

5See refs.|E|3] for earlier studies that led to this proposal. This equisaleas checked at finite temperature in the
weak coupling regimem.l]. It has also been extended to genergb gnanifolds and coset spac[l4].
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CPOs are determined as

(05 ) aE () = ca(OF 0O (), .

(R )R ()08 (%) ) = caspane (OR () OR () 05 (x0)) (3:2)

free

whereca andca,a,n, are over-all constants dependingAxym in general, and- - - )see denotes the
results of free theory. The analysis on the gravity side sugdests [17]

Cai 00N Cai 0N
_ Mhabols — Aifols =1 for 4. (3.3)
v €01C0,Cng N—00,Agypm—o0 V/C0:CaoCag N—00,Asym—0

In order to relate the above operators to those in the PWMM, we firstippetfoe conformal
mapping from R* to R x S*. Then theM-point functions of the CP@?’RiXS3 onRx S are related
to those in PWMM as

el  rdo"
21 21

x x 1
<ﬁ§1 53(,[179(31)) . ﬁgeM SS(tM,QgM))> = <ﬁApl\N(tl) . ﬁ";\ﬂ’v(tM» ’
(3.4)
where we have define@f"V(t) = Tay..a, tr (xalxaz . -Xaﬂ(t)) [Bl.

We calculate the two-point functior<str22(t1) trZTz(t2)>, whereZ = %(Xﬁ— iXs), and the

three-point functions<tr (X4X5(t1)) tr <X5X6(t2)) tr (X6X4(t3)> > The CPOs we consider here
haveA = 2, and the AdS/CFT predicts,, = 02/2, which we test by Monte Carlo calculations.

4. Monte Carlo method

In order to simulate the PWMM (2.1), we compactify thdirection to a circle of circumfer-
encef. Since we are interested in the properties at zero temperature, we impioskodsoundary
conditions on both scalap$(t) and fermions¥,(t), which keep SUSY intact. In Fourier-mode
simulation [}#], we first fix the gauge symmetry completely by choogifty = Ldiag(ay,---,an)
with — 71 < aa < 71, and then make a Fourier expansi¥it) = 3, X €“™ (w = ) and sim-
ilarly for the fermions. The upper bourfdd on the Fourier modes plays the role of the UV cutoff.
The original PWMM can be retrieved by just taking the limgs— o and% — oo since there are
neither UV nor IR divergences. The model regularized by fifitend A can be simulated by the
RHMC algorithm. This method has been applied extensively to the DO-bratensgorresponding
to i = 0, and the results confirmed the gauge/gravity duality for various otisles/f]’

Since the parameteg,, in the action [2]1) can be scaled away by appropriate redefinition of
fields and parameters, we tagig, N = 1 without loss of generality as in ref§] [5]. In this convention
one finds from eq.[(25) that the small (largeyegion in the PWMM corresponds to the strong
(weak) coupling region in the 4d/" = 4 SYM.

5The metrics oR* andRx S° are related ads, = dr2+ r2dQ3 = e!'ds ¢, wherer = 2e>!. The transformation
of the CPOs is given bﬁfxs3 — MR

"See refs.|EI8] for Monte Carlo calculations based on the lattice reguiariza

2
ie
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Figure 1. (Left) The two-point functior<tr£5(p) trZTZ(—p)> is plotted in the log scale. The curves repre-
sent the corresponding free theory results multiplied B9, 0.799, 0.647 fou = 4.0, 2.0, 1.3, respectively.
(Right) The ratio of the two-point function to the corresgom free theory result is plotted in the linear scale
for uy=4.0,2.0,1.3.
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Figure 2. (Left) The three-point functior(tr (Xﬂ?(?,(p)) tr ()/(5(/6(0)) tr (X/;XZ(—p)) > is plotted in the
log scale. The curves represent the corresponding freeythesults multiplied by 0.850, 0.716, 0.491 for
U =4.0,2.0,1.3, respectively. (Right) The ratio of the three-point fuontto the corresponding free theory
result is plotted in the linear scale far=4.0,2.0,1.3.

5. Numerical results

The parameters describing the background (2.3) are chosan:a%,v = 2,k = 2, which
corresponds to the matrix sidé= 6. We use[(2]2) with[(2]3) as the initial configuration and check
that no transition to other vacua occurs during the simulation. The valugsaaf use areu =
4.0,2.0,1.3, which correspond tasyy ~ 0.55,4.39,16.0, respectively, in the chosen background.
Thus we cover a wide range of the coupling constant. The regularizaiamgters in thé-
direction are taken g8 = 5.0, A = 12 for all cases.

In fig. fl (Left) we plot the two-point functicﬁ'\<tr25(p) trZAT/Z(—p)>. We find that the results
agree well — up to overall constants dependingier- with the corresponding free theory results,

8The Fourier transform of an operat6it) is defined ag/(p) = %fg dto(t)e P,
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which are obtained by just switching off the interaction terms in the reduce@lmoth the same
regularization parameters. In fi. 1 (Right) we plot the ratio to the free yhesults. Figuré]2
shows similar results for the three-point functiém ()@@(p)) tr ()25\)?6(0)) tr (XZ)@(—p)) >
We can extract the the overall constants cor-

responding t@, andcy,2in eq. (3.2) from figs[]1 09t .
and[®, respectively. Since the data on the right o8 ]
panels are not completely constaniinwe take o7 r ]
the maximum and minimum values as the upper§ 0.6 | 1
and lower bounds of the estimates. In fig. 3we 5|
plot the overall constants obtained in this way

U=4.0 —e— ]

=13 —=—
for three values ofi. The data points represent  >*[ AASICRT 1
the mean value of the upper and lower bounds. 0.4 05 06 07 08 09 1
We find that our results for various coupling con- C2

stants lie on the straight line which represents th&gure 3: The overall constants correspondingo
predictioncyy, = Cg/z from the AdS/CFT. Our andcy,;in eq. (3.p) are plotted in the log-log scale.

results therefore suggest that the relatipn] (3.3ie straight line presents the relatiog: = ¢/?
holds also at intermediate coupling constants. Predicted by the AdS/CFT.

6. Summary and discussions

We have made the first attempt to investigate nonperturbative properties4df.tf =4 SYM
from first-principle calculations. Our formulation is considered optimal is@réing SUSY, which
seems to give us the virtue of making the coupling constant dependence 6P correlation
functions restricted mostly to the overall factors. This feature of our ftatimn enables us to test
the prediction [(3]3) of the AdS/CFT correspondence already for quiteadl snatrix size. Our
results suggest that the relation extends to intermediate coupling constamh. as

In fact there is strong evidence from field theoretical analysis in thet4e: 4 SYM that the
non-renormalization theorem holds for two-point and three-point [aiwa functions of CPOs
[L9,20P, which impliesca = ca,an, = 1. It is therefore expected that the data points in[fig. 3 will
approachc; = ¢y22 = 1 as we take the limit(3.4) for fixedlsym, which needs to be checked.

The analysis of four-point functions would be more interesting [22] stheee is evidence
for the non-renormalization theorem only in the extremal and next-to-extreasas [2], and in
fact the AdS/CFT predicts its violation for the other general cases in thegstaupling limit [24].
We consider it very interesting that such nonperturbative issues irt’4d 4 SYM have become
accessible by computer simulations.
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