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We perform Monte Carlo calculation of correlation functions in 4d N = 4 super Yang-Mills

theory onR× S3 in the planar limit. In order to circumvent the well-known problem of lattice

SUSY, we adopt the idea of a novel large-N reduction, which reduces the calculation to that of

corresponding correlation functions in the plane-wave matrix model or the BMN matrix model.

This model is a 1d gauge theory with 16 supersymmetries, which can be simulated in a manner

similar to the recent studies of the D0-brane system. We study two-point and three-point functions

of chiral primary operators at various coupling constant, and find that they agree with the free

theory results up to overall constant factors. The ratio of the overall factors for two-point and

three-point functions agrees with the prediction of the AdS/CFT correspondence.
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1. Introduction

The gauge-gravity duality [1] has been one of the most important subjects instring theory over
the past decade. The most typical example is the so-called AdS/CFT correspondence between type
IIB superstring theory onAdS5×S5 and 4dN = 4 U(N) super Yang-Mills theory (SYM). Even in
this case, however, a complete proof of the duality is still missing. In particular, the region described
by the classical supergravity on the string theory side corresponds to thestrongly coupled region in
the planar large-N limit on the SYM side. In order to study the strongly coupled 4dN = 4 SYM
from first principles, one needs to have a non-perturbative formulationsuch as the lattice QCD.
The problem here is that the lattice regularization necessarily breaks translational symmetry, which
is included in the supersymmetry (SUSY). In order to restore SUSY in the continuum limit, one
generally has to fine-tune parameters in the lattice action. In fact any lattice formulations of 4d
N = 4 SYM proposed so far seem to require fine-tuning of at least three parameters [2].

Since 4dN = 4 SYM has conformal symmetry, the theory onR4 is equivalent to the theory on
R× S3 through conformal mapping. The novel large-N reduction [3] connects the planar large-N
limit of this theory to a reduced model, which can be obtained by shrinking theS3 to a point. The
resulting one-dimensional gauge theory with 16 supercharges can be studied by using the Fourier-
mode simulation [4] as in recent studies of the D0-brane system [5]. Thus we can perform Monte
Carlo calculations in 4dN = 4 SYM respecting SUSY maximally and without fine-tuning.1

In this article we present explicit results for correlation functions of chiral primary operators
(CPOs) in 4dN = 4 SYM.2 In particular, we find that the two-point and three-point functions agree
with the free theory results up to overall constant factors even at fairly strong coupling. Moreover
the ratio of the overall factors agrees with the prediction of the AdS/CFT correspondence.3

2. Large-N reduction for N = 4 SYM on R×S3

Let us first discuss the novel large-N reduction forN = 4 SYM onR×S3. By collapsing the
S3 to a point, we obtain the plane wave matrix model (PWMM) or the BMN matrix model [9]4,
whose action is given by

SPW =
1

g2
PW

∫
dt tr

[
1
2
(DtXM)2− 1

4
[XM,XN ]2 +

1
2

Ψ†DtΨ− 1
2

Ψ†γM[XM,Ψ]

+
µ2

2
(Xi)

2 +
µ2

8
(Xa)

2 + iµεi jkXiX jXk + i
3µ
8

Ψ†γ123Ψ
]

. (2.1)

Here the parameterµ is related to the radius ofS3 asRS3 = 2
µ , and the covariant derivative is defined

by Dt = ∂t − i[A, · ], whereA(t), as well asXM(t) andΨ(t), is anN ×N hermitian matrix. The
range of indices is given by 1≤ M,N ≤ 9, 1≤ i, j,k ≤ 3 and 4≤ a ≤ 9. The model has the SU(2|4)

symmetry with 16 supercharges.

1See refs. [6] for proposals for finiteN.
2See ref. [7] for some preliminary results on the Wilson loop.
3There are also Monte Carlo studies of the 4dN = 4 SYM based on matrix quantum mechanics of 6 bosonic

commuting matrices [8], which give results consistent with the AdS/CFT forthe three-point functions of CPOs.
4Properties of this model at finite temperature are studied at weak coupling[10, 11] and at strong coupling [12].
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In fact the model possesses many discrete vacua representing multi fuzzy spheres, which are
given explicitly by

Xi = µ
ν⊕

I=1

(
L(nI)

i ⊗1kI

)
with

ν

∑
I=1

nIkI = N , (2.2)

where L(r)
i are ther-dimensional irreducible representation of the SU(2) algebra[L(r)

i ,L(r)
j ] =

iεi jk L(r)
k . These vacua preserve the SU(2|4) symmetry, and are all degenerate.

In order to retrieve the planarN = 4 SYM on R× S3, one has to pick up a particular back-
ground from (2.2), and consider the theory (2.1) around it. Let us consider the case

kI = k , nI = n+ I − ν +1
2

for I = 1, · · · ,ν , (2.3)

and take the large-N limit in such a way that

k → ∞ ,
n
ν
→ ∞ , ν → ∞ , with λPW ≡ g2

PWk
n

fixed . (2.4)

Then the resulting theory is claimed [3] to be equivalent5 to the planar limit ofN = 4 SYM on
R×S3 with the ’t Hooft coupling constant given by

λSYM = 2π2λPW(RS3)3 =
16π2k

n
g2

PW

µ3 . (2.5)

The above equivalence may be viewed as an extension of the large-N reduction [15], which
asserts that the large-N gauge theories can be studied by dimensionally reduced models. The orig-
inal idea for theories compactified on a torus can fail due to the instability of theU(1)D symmetric
vacuum of the reduced model [16]. This problem is avoided in the novel proposal since the PWMM
is a massive theory and the vacuum preserves the maximal SUSY. Since the planar limit is taken
in the reduced model, the instanton transition to other vacua and the “fuzziness” of the spheres
are suppressed. Viewed as a regularization of theN = 4 SYM on R× S3, the present formula-
tion respects the maximal SU(2|4) symmetry (with 16 supercharges) of the PWMM, and in the
limit (2.4) the symmetry is expected to enhance to the full superconformal SU(2,2|4) symmetry
(with 32 supercharges). Since any kind of UV regularization breaks theconformal symmetry, this
regularization is optimal from the viewpoint of preserving SUSY.

3. Correlation functions in 4d N = 4 SYM

As simple examples of 1/2 BPS operators, let us consider the CPOs given by

O
R4

∆ (x) = Ta1···a∆ tr
(

XR4

a1
XR4

a2
· · ·XR4

a∆
(x)

)
, (3.1)

whereTa1···a∆ is a symmetric traceless tensor andXR4

a represents the six scalars in 4dN = 4 SYM
on R4. Thanks to the conformal symmetry, the forms of two-point and three-pointfunctions of the

5See refs. [13] for earlier studies that led to this proposal. This equivalence was checked at finite temperature in the
weak coupling regime [11]. It has also been extended to general group manifolds and coset spaces [14].
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CPOs are determined as
〈
O

R4

∆ (x1)O
R4

∆ (x2)
〉

= c∆

〈
O

R4

∆ (x1)O
R4

∆ (x2)
〉

free
,

〈
O

R4

∆1
(x1)O

R4

∆2
(x2)O

R4

∆3
(x3)

〉
= c∆1∆2∆3

〈
O

R4

∆1
(x1)O

R4

∆2
(x2)O

R4

∆3
(x3)

〉
free

, (3.2)

wherec∆ andc∆1∆2∆3 are over-all constants depending onλSYM in general, and〈· · · 〉free denotes the
results of free theory. The analysis on the gravity side suggests [17]

c∆1∆2∆3√
c∆1c∆2c∆3

∣∣∣∣
N→∞,λSYM→∞

=
c∆1∆2∆3√
c∆1c∆2c∆3

∣∣∣∣
N→∞,λSYM→0

= 1 for ∀∆i . (3.3)

In order to relate the above operators to those in the PWMM, we first perform the conformal
mapping6 from R4 to R×S3. Then theM-point functions of the CPOOR×S3

∆i
on R×S3 are related

to those in PWMM as

∫ dΩ(1)
3

2π2 · · ·
∫ dΩ(M)

3

2π2

〈
O

R×S3

∆1
(t1,Ω

(1)
3 ) · · ·OR×S3

∆M
(tM,Ω(M)

3 )
〉

=
1

nMν
〈
O

PW
∆1

(t1) · · ·OPW
∆M

(tM)
〉

,

(3.4)
where we have definedOPW

∆ (t) = Ta1···a∆ tr
(

Xa1Xa2 · · ·Xa∆(t)
)

[3].

We calculate the two-point functions
〈

trZ2(t1) trZ†2(t2)
〉

, whereZ = 1√
2
(X4 + iX5), and the

three-point functions
〈

tr
(

X4X5(t1)
)

tr
(

X5X6(t2)
)

tr
(

X6X4(t3)
)〉

. The CPOs we consider here

have∆ = 2, and the AdS/CFT predictsc222 = c3/2
2 , which we test by Monte Carlo calculations.

4. Monte Carlo method

In order to simulate the PWMM (2.1), we compactify thet-direction to a circle of circumfer-
enceβ . Since we are interested in the properties at zero temperature, we impose periodic boundary
conditions on both scalarsXi(t) and fermionsΨα(t), which keep SUSY intact. In Fourier-mode
simulation [4], we first fix the gauge symmetry completely by choosingA(t) = 1

β diag(α1, · · · ,αN)

with −π < αa ≤ π, and then make a Fourier expansionXi(t) = ∑Λ
n=−Λ X̃i,neiωnt (ω ≡ 2π

β ) and sim-
ilarly for the fermions. The upper boundΛ on the Fourier modes plays the role of the UV cutoff.
The original PWMM can be retrieved by just taking the limitsβ → ∞ and Λ

β → ∞ since there are
neither UV nor IR divergences. The model regularized by finiteβ andΛ can be simulated by the
RHMC algorithm. This method has been applied extensively to the D0-brane system corresponding
to µ = 0, and the results confirmed the gauge/gravity duality for various observables [5].7

Since the parameterg2
PW in the action (2.1) can be scaled away by appropriate redefinition of

fields and parameters, we takeg2
PWN = 1 without loss of generality as in refs. [5]. In this convention

one finds from eq. (2.5) that the small (large)µ region in the PWMM corresponds to the strong
(weak) coupling region in the 4dN = 4 SYM.

6The metrics ofR4 andR×S3 are related asds2
R4 = dr2+r2dΩ2

3 = eµtds2
R×S3, wherer = 2

µ e
µ
2 t . The transformation

of the CPOs is given byOR×S3

∆ = e
∆
2 µt

OR4

∆ .
7See refs. [18] for Monte Carlo calculations based on the lattice regularization.
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Figure 1: (Left) The two-point function
〈

tr Z̃2(p) tr Z̃†2(−p)
〉

is plotted in the log scale. The curves repre-

sent the corresponding free theory results multiplied by 0.919, 0.799, 0.647 forµ = 4.0,2.0,1.3, respectively.
(Right) The ratio of the two-point function to the corresponding free theory result is plotted in the linear scale
for µ = 4.0,2.0,1.3.

1e-006

1e-005

0.0001

0.001

0 2 4 6 8 10 12 14

F
.T

.〈 
tr

(X
4X

5)
 tr

(X
5X

6)
 tr

(X
6X

4)
〉 

p

µ = 4.0
µ = 2.0
µ = 1.3

free, µ =4.0
free, µ =2.0
free, µ =1.3

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

〈 t
r(

X
4X

5)
 tr

(X
5X

6)
 tr

(X
6X

4)
〉 

〈 t
r(

X
4X

5)
 tr

(X
5X

6)
 tr

(X
6X

4)
〉 fr

ee

p

µ = 4.0
µ = 2.0
µ = 1.3

Figure 2: (Left) The three-point function
〈

tr
(

X̃4X5(p)
)

tr
(

X̃5X6(0)
)

tr
(

X̃6X4(−p)
)〉

is plotted in the

log scale. The curves represent the corresponding free theory results multiplied by 0.850, 0.716, 0.491 for
µ = 4.0,2.0,1.3, respectively. (Right) The ratio of the three-point function to the corresponding free theory
result is plotted in the linear scale forµ = 4.0,2.0,1.3.

5. Numerical results

The parameters describing the background (2.3) are chosen asn = 3
2,ν = 2,k = 2, which

corresponds to the matrix sizeN = 6. We use (2.2) with (2.3) as the initial configuration and check
that no transition to other vacua occurs during the simulation. The values ofµ we use areµ =

4.0,2.0,1.3, which correspond toλSYM ≃ 0.55,4.39,16.0, respectively, in the chosen background.
Thus we cover a wide range of the coupling constant. The regularization parameters in thet-
direction are taken asβ = 5.0,Λ = 12 for all cases.

In fig. 1 (Left) we plot the two-point function8
〈

tr Z̃2(p) tr Z̃†2(−p)
〉

. We find that the results
agree well — up to overall constants depending onµ — with the corresponding free theory results,

8The Fourier transform of an operatorO(t) is defined asÕ(p) = 1
β

∫ β
0 dt O(t)e−ipt .
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which are obtained by just switching off the interaction terms in the reduced model with the same
regularization parameters. In fig. 1 (Right) we plot the ratio to the free theory results. Figure 2

shows similar results for the three-point function
〈

tr
(

X̃4X5(p)
)

tr
(

X̃5X6(0)
)

tr
(

X̃6X4(−p)
)〉

.

We can extract the the overall constants cor-

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4 0.5 0.6 0.7 0.8 0.9 1

c 2
22

c2

µ =4.0
µ =2.0
µ =1.3

AdS/CFT

Figure 3: The overall constants corresponding toc2

andc222 in eq. (3.2) are plotted in the log-log scale.
The straight line presents the relationc222 = c3/2

2
predicted by the AdS/CFT.

responding toc2 andc222 in eq. (3.2) from figs. 1
and 2, respectively. Since the data on the right
panels are not completely constant inp, we take
the maximum and minimum values as the upper
and lower bounds of the estimates. In fig. 3 we
plot the overall constants obtained in this way
for three values ofµ. The data points represent
the mean value of the upper and lower bounds.
We find that our results for various coupling con-
stants lie on the straight line which represents the
predictionc222 = c3/2

2 from the AdS/CFT. Our
results therefore suggest that the relation (3.3)
holds also at intermediate coupling constants.

6. Summary and discussions

We have made the first attempt to investigate nonperturbative properties of the 4dN = 4 SYM
from first-principle calculations. Our formulation is considered optimal in preserving SUSY, which
seems to give us the virtue of making the coupling constant dependence of the CPO correlation
functions restricted mostly to the overall factors. This feature of our formulation enables us to test
the prediction (3.3) of the AdS/CFT correspondence already for quite a small matrix size. Our
results suggest that the relation extends to intermediate coupling constants aswell.

In fact there is strong evidence from field theoretical analysis in the 4dN = 4 SYM that the
non-renormalization theorem holds for two-point and three-point correlation functions of CPOs
[19, 20]9, which impliesc∆ = c∆1∆2∆3 = 1. It is therefore expected that the data points in fig. 3 will
approachc2 = c222 = 1 as we take the limit (2.4) for fixedλSYM, which needs to be checked.

The analysis of four-point functions would be more interesting [22] sincethere is evidence
for the non-renormalization theorem only in the extremal and next-to-extremal cases [23], and in
fact the AdS/CFT predicts its violation for the other general cases in the strong coupling limit [24].
We consider it very interesting that such nonperturbative issues in 4dN = 4 SYM have become
accessible by computer simulations.
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