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1. Introduction

There has been a renewed interest in the Lattice communi®;, A, 4, 5, 6, 7] for the possi-
bility [8] of having nontrivial infrared fixed points in asyptotically free gauge theories. Recently,
Tom deGrand [9] and Mike Ogilvie [10] have written nice reveéeon the subject. One particularly
interesting situation from a phenomelogical point of viewihen the3 function approaches zero
from below and encounters only small changes over a signifiegange of the coupling constant.
We then say that the “running” coupling constant “walks”.offfrthis perspective, the ability to
control the height of thg function appears to be quite important. A simple model wltleisecan
be done easily is the case of a quadr@itunction which appears naturally in the quantum me-
chanical ¥r? potential and other problems where conformality can bedostrestored [11, 12].
For a sufficiently large value of the constant term of a quiaal function, one infrared (IR) and
one ultraviolet (UV) fixed points are present. By loweringtbonstant term, we can make the two
fixed points coalesce and then disappear in the complex.pldreesituation is sketched in Fig. 1

This motivated us [13] to study extensions of renormal@atiroup (RG) flows in the complex
coupling plane. A general feature that we observed is thatFikher's zeros - the zeros of the
partition function in the complex coupling plane - appakeatt as “gates" for the RG flows ending
at the strongly coupled fixed point. This can be seen as a eoneptension of the general picture
proposed by Tomboulis [14] to prove confinement: the gatsstpen as the volume increases and
the flows starting in a complex neighborhood the UV fixed poart reach the IR fixed point where
confinement and the existence of a mass gap are clearly prdsaygeneral, losing conformality
corresponds to the generation of a mass gap and the presecoefioement and complex fixed
points not on the real axis. We argue that such fixed pointsedaged to the absence of Fisher’s
zeros on the real axis.

In the following, we illustrate this scenario with model @alations for the B O(N) non-
linear sigma models in the lardedimit and the Ising hierarchical model. In all cases, thenBis
zeros (of the partition function) seem to govern the globettavior of the flows near the real
axis. In the infinite volume limit, these zeros delimit theubhdary of the basin of attraction of
the strongly coupled fixed point. For confining models, a é§aemains open. We considered
modifications or deformations that may affect that behagfinite volume, change of dimension,
additional pieces in the action). We will then present récesults regarding the Fisher zeros for
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Figure 1: Sketch of what happens when we reduce the constant term iadraticf3 function: the IR and
UV fixed points merge and disappear in the complex plane
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U(1) andSU(2) 4D LGT (zeros at different volume; no RG flows yet). Note that aitéi volume
all the models considered here have a partition functiotytical in the entire compley [0 1/g?
plane. We should also mention previous studies of RG tramsftoons in the complex temperature
or coupling for 1D spin models and 2D gauge models [15] .

2. Complex RG flows in spin models

We now discuss numerical calculations of complex RG flowgin smodels. We first consider
the 2D O(N) non-linear sigma model in the lardédimit. The partition function reads:

Z= / |‘| dNpo (@@ — 1)6_(1/9(2))Zx‘e(1_(a<-@+e) . (2.1)
X

We use the notatiop = 1/(g3N), not to be confused with th@ function, for the inverse 't Hooft
coupling andM = myap/Auv for the mass gap in cutoff units. For larg-we have the gap
equation:

T d%k 1
/ / (2m)2 2(2 —cogky) —cogkp)) +M2 (2.2)

At Infinite volume and small coupling we have the asymptdiidaee relation: 3(M?) ~ 1/(4m) In(1/M?),
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Figure 2: RG flows obtained by rescaling a complex mass gap fofxi¢) model.

We first consider a simple complex extension of the runninghefcoupling when the UV
cutoff is decreased: we take the mass gap on a small circleeicamplex planemgap, = ed®
and then lower the cutoffAyy — Auv/b. The flows forb = 2 are represented by red arrows in
Fig. 2 . The blending blue crosses (called “blue lines” hitegpare the images obtained from
Eg. (2.2) of two lines of points located very close above aeldvs the[—8,0] cut of B(M?) in
the M? plane. The RG flows are constrained to stay inside the bles md we will explain why
the Fisher's zeros are expected to stay outside the blug lifilee flatness of the flows at large
follows from asymptotic freedom relation: the complex ghasM? is not affected by the cutoff
and its logarithm has a constant imaginary part.
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As explained in Ref. [16], the zeros of the partition funotishould only appear outside the
blue lines in Fig. 2. This can be inferred from the repred@mna

f db(dz/db)/Z = 2y ng(C) , 2.3)
¢ q
whereny(C) is the number of zeros of ordgrinsideC. For largeN,
?{‘ db(dz/db)/Z 0 74 dM2(db/dM?)(M? — 1/b) 2.4)
C (o

The second term has a polebat 0, but it is compensated by a poleM?. The poles ofdb/dM?)
are in the cut (the real interval-8,0]). If the contourC’ in the M? plane does not cross the cut,
then there are no zeros of the partition function inside treespondingC in the b-plane. We
conclude that in the largi-limit, there are no Fisher’s zero in the image of the Mftplane. Fig.
2 illustrates a situation that we expect to be generic: thdlB@ admit an analytical continuation
in the complex plane until Fisher’s zeros appear.

We also considered the two lattice matching [17]. In sho#, asnsidered the sums of the
spins in fourL /2 x L/2 blocksB; NBis a nearest neighbor block Bf We define:

o ((Sxee @)(Zyene®))
(a5 ®)),

(2.5)

A discrete RG transformation mappifjinto 8’ while the lattice spacing changes frarto 2a
is obtained by matchingR(3,L) = R(B’,L/2). This method bypasses the difficult construction
of the effective hamiltonian. The solutions were found nriocadly by Newton’s method. When
several solutions could be found, we picked the closestotiyinal 3. We defined the ambiguity
as|B — Belosest/| B — Bad.closesi- The results are presented in Fig. 3 for 4.

It should noted that the appearance of a fixed point on thesésiheal ~ 0.3 is a finite size
effect. AsL increases, the fixed point moves to arbitrarily lagyen general, finite size effects in
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Figure 3: Complex RG flows with the 2-lattice matching method for 4; Color scale :-Ln(ambiguity)
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the complex plane are very intricate since the mapping of E§] becomes a ratio of polynomial
and requires a multi-sheet Riemann surface to be inverted. Will be discussed at length in Ref.
[18].

We also applied the two-lattice matching for Dyson’ hiehécal model with a Ising measure.
It is a lattice model with block interactions depending oa ttetails of the block configurations
in a minimal way. In this model, the local potential approaiion is exact. Its recursion formula
is related to Wilson’s approximate recursion formula (thiwwed the first numerical RG calcu-
lations) but the exponents are different. The probabilistribution for the total spin in blocks
can be calculated iteratively with this formula. The modeas la continuous parameter that can be
tuned in order to reproduce the scaling ddalimensional of massless Gaussian field. Bet 2
Dyson has proven rigorously the absence of transition [}y D = 3 it has a Wilson fixed point
nearB ~ 1.179. These facts are reviewed in Ref. [20] where the questidthe improvement of
the hierarchical approximation is also discussed. ComRl&xlows showing bifurcations around
lines of Fisher's zeros are shown in Fig. 2 of Ref. [13] . Thédisize effects and the ambiguity
in the search will be discussed in Ref. [21]

3. Fisher’s zeros indD LGT

At this point, we have not constructed complex RG flows forggatheories, but we have
designed numerically stable methods to calculate the Fésheros inU (1) andSU(2) 4D lattice
gauge theories. We use the spectral decomposition

z— / T ysrS)e S (3.1)
0

with n(S) the density of states and” the number of plaquettes. For lange, we have

n(S)eP"s =" ((9-Ps) — e (F(50)+(1/2) f(s0) (5—50)%+..) (3.2)

with s=S/.# andf’(sp) = B. f(s) can be interpreted as a color entropy densitRéff’(sp) < O,
the distribution becomes Gaussian in the infinite volumenc&iGaussian distributions have no
complex zeros [22], the level curniRe f'(s9) = 0 is the boundary of the region where Fisher’s
zeros may appear. They typically delimit thin elongatedaeg ending at a complex zero 6f.
Results forSU(2) are shown in Fig. 3 of Ref. [13] and can be compared withUlj#) case in
Fig. 4. The main difference is that the imaginary part of thedst zero appear to stabilize at a
finite, non-zero value foBU(2) while this quantity goes to zero in th#(1) case. The details of
the numerical construction df(s) will be discussed in Ref. [23].

ForU (1) multicanonical methods were used [24] and naive histogemeighting works well.
Th e numerical error on the partition functidoZ can be estimated from;(S) — < n(S) >), where
i is an index for independent runs. Zeros can be exclud@Zif<< |Z|. ForSU(2), the imaginary
part of Fisher's zeros are too large to use simple reweightiethods. By using Chebyshev inter-
polation for f(s) and monitoring the numerical stability of the integralsiwtite residue theorem,
it is possible to obtain reasonably stable results. Unlilelt(1) case, the imaginary part of the
lowest zeros does not decrease as the volume increasebelndintear density increases at a rate
compatible withL=*. The effect of an adjoint term (+0.5) is that the lowest zeveggdown by
about 40 percent.
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Figure 4: Images of the zeros df’(s) in the 8 plane (open symbols) and Fisher’s zeros (filled symbols) for
U(1) (lefty andSU(2) (right) on 4 (squares) and*§(circles) lattices.

4. Conclusions

It is possible to extend various RG flows to the comgBeplane. When the size of the system
is comparable to the Compton wavelength of the gap, therstieag scheme dependence. Fisher’s
zeros control the global behavior of the RG flows. Confinerdftaten gate”. Plans: QELBU(3)
with variousNjs.
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