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1. Introduction

In D Euclidean dimensions, at N = ∞ SU(N) pure YM simplifies [1], but this has not yet been
turned into a quantitative tool. We are trying to improve on this situation.

Let O be an observable characterized by one single scale l in 4D. For lΛN � 1, 〈O〉N=∞ can
be computed by summing up contributions from planar Feynman diagrams. Moreover, there are
good reasons to believe that the series in 1

log(lΛN) converges [2]. ΛN is the analogue of ΛQCD for
pure SU(N) gauge theory. For lΛN � 1, for a class of specific O’s, 〈O〉N=∞ can be expanded in

1
lΛN

using an effective theory based on free strings [3].
How are the two regimes connected ?
Some O’s have a narrow crossover as l changes from lΛN . 1 to lΛN & 1 at finite N, becoming

a “phase transition” at N = ∞. Examples of such O’s will be presented later – in these examples the
operators turn out to be non-local [4]. Such large N phase transitions tend to fall in Random Matrix
universality classes. The hope is to exploit this to connect field theoretical perturbation theory to
effective string theory.

2. Loops

2.1 Wilson loop operator – ignoring renormalization

Let R be an irreducible SU(N) representation of dimension dR. We define the nonlocal matrix
valued operator:

Pei
∮
C AR·dx ≡ΩR(C ) (2.1)

P denotes ordering round the closed curve C . The starting/end point of the ordering is suppressed
because we shall build out of ΩR(C ) other operators which will all be independent of the choice of
this point on C . The Wilson loops are the following averages:

WR(C ) = tr〈ΩR(C )〉/dR (2.2)

Typically, one focuses only on the fundamental representation, which we denote by R = 1 or
R = f . We depart from this by considering the collection of all fully antisymmetric representations,
R = k,N−k; k = 1, ...,

[N
2

]
. The generating function for the Wk(C ) is 〈det(z+Ω f (C ))〉= Q(z,C ),

a palindromic polynomial of rank N in z. This permits us to introduce a set of quantities we loosely
refer to as the “eigenvalues” of Ω1(C ), the roots of Q(z,C ). As the loop C is dilated, its minimal
area A grows and one can extract k-string tensions σk from Wk(C )∼ exp(−σkA).

The following scenario is plausible: A large N “phase transition” (meaning: a non-smooth
change in the dependence on z) separates small from large loops and occurs in D=2,3,4. As N→∞

a continuum density of “eigenvalues”, roots of Q(z,C ), develops, supported on |z| = 1, gapped at
z = 1 for small loops, and uniform for infinite loops. Hence, for very large loops the deviation of
the density from uniformity is controlled by [N/2] exponents e−σkA, dominated by e−σ f A. Here we
imposed an assumed parity invariance.

Close to critical loop-size, and for z close to 1, there is a universal description common to all
dimensions. The case D = 2 is exactly soluble so the universal form is known [5]. This phase
transition is seen only in Q(z,C ), but not in the individual Wk’s and is therefore different from the
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familiar Gross-Witten phase transition [6]. The universality provides an economic parametrization
of the short-scale to long-scale crossover in Q(z,C ) for 1� N < ∞.

For this to be meaningful we need to renormalize Q(z,C ). After this is done, we can use lattice
gauge theory simulations to validate the scenario as a property of continuum large N SU(N) gauge
theory.

2.2 Renormalization of Wilson loops

Our bare observable is Q(z,C ) = 〈det(1+zΩ
†
f (C ))〉. The following representation is an exact

identity for an Ω f given by a fixed N×N unitary matrix of unit determinant [7]:

det[1+ zΩ
†
f (C )] =

∫
[dψ̄dψ]e

∫ l
0 dσψ̄(σ)[∂σ−µ−ia(σ)]ψ(σ). (2.3)

Here, z = e−µl , σ parametrizes C by x(σ) with [∂σ xµ(σ)]2 = 1 and l is the length of C . The
Grassmann variables ψ̄(σ),ψ(σ) obey anti-periodic boundary conditions. The gauge potential
along the curve is projected from the D–dimensional gauge potential by a(σ) = Aµ(x(σ)) ∂xµ (σ)

dσ
.

We rewrite out bare observable accordingly:

Q(z,C ) = 〈
∫

[dψ̄dψ]e
∫ l

0 dσψ̄(σ)[∂σ−µ−ia(σ)]ψ(σ)〉 (2.4)

Now we employ power counting to determine the needed counterterms (ct-s) for renormaliza-
tion [8]. The parameterization choice of the curve makes the curve parameter of dimension inverse
mass, [σ ] =−1, which in turn makes the Grassmann fields unitless, [ψ̄,ψ] = 0. Terms containing
more than one ψ̄ψ pair and a single derivative can be eliminated by a field redefinition. This leaves
the non-redundant ct-s, [ψ̄ψ]k, k = 1, ..N. The symmetry ψ → ψ̄, ψ̄ → ψ, Aµ → A∗µ can be
preserved reducing the number of ct-s to

[N
2

]
.

This leaves exactly the amount of freedom needed to arrange for the inequality 1
dR

WR(C )≤ 1 to
hold for all antisymmetric R, after renormalization. So long as this is true, some further adjustments
(not finely tuned) of the finite parts of the coefficients of the ct-s will render Q(z,C ) palindromic
with all roots on |z| = 1. To be sure, in 4D and 3D, the short distance singularity that one expects
from one gluon exchange even after the removal of the perimeter divergence, is eliminated by the
integration round the contour and one can set the expectation values to their classical values for
zero size loops. In 4D for example, the one gluon exchange answer could be regularized to give a
nontrivial conformally invariant functional of the loop shape [9], but we do not do this here.

The divergences one has to eliminate are linear in 4D and logarithmic in 3D. There are no
divergences in 2D. All our loops are assumed to be differentiable, so the corner singularities of the
4D case do not occur.

2.3 A Dirac operator associated with the large N transition

The spectrum of D1(C )≡ ∂σ − ia(σ) will have a gap for small loops and will be gap-less for
large loops. There is an analogy to spontaneous chiral symmetry breaking and its connection to
chiral random matrix theory. This analogy is exploited in our generalization to surfaces.
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2.4 More about the divergences

The
[N

2

]
ct-s are necessary to eliminate the

[N
2

]
perimeter divergences associated with the

distinct N-ality representations, not counting conjugate ones. Physically, the ct-s represent the
arbitrary amounts of thickening the distinct k-strings need.

On the lattice one “thickens” the gauge fields the fermions see. For example, in APE smearing
[10] one defines a recursion starting from the link matrices Uµ(x) at step n = 0 and proceeds from
step n to step n+1 by:

X (n+1)
µ (x; f ) = (1−| f |)U (n)

µ (x; f )+
f

2(d−1)
Σ

U (n)
µ (x; f )

U (n+1)
µ (x; f ) = X (n+1)

µ (x; f )
1√

[X (n+1)
µ (x; f )]†X (n+1)

µ (x; f )
(2.5)

Σ
U (n)

µ (x; f )
denotes the “staple” associated with the link U (n)

µ (x; f ) in terms of the entire set of

U (n)
ν (y; f ) matrices. Writing U (n)

µ (x; f ) = exp(iA(n)
µ (x; f )), and expanding in Aµ one finds [11],

in lattice Fourier space:
A(n+1)

µ (q; f ) = ∑
ν

hµν(q)A(n)
ν (q; f ) (2.6)

with
hµν(q) = f (q)(δµν −

q̃µ q̃ν

q̃2 )+
q̃µ q̃ν

q̃2 (2.7)

where q̃µ = 2sin(qµ

2 ) and

f (q) = 1− f
2(d−1)

q̃2 (2.8)

The iteration is solved by replacing f (q) by f n(q), where, for small enough f ,

f n(q)∼ e−
f n

2(d−1) q̃2
(2.9)

One can think about f n(q) as a gauge invariant, Euclidean, form factor in a particular gauge; this
form-factor is attached to the gauge field – fermion pair vertex.

One can take a trivial continuum limit [12] on the step number and f n is then seen to play
the role of the fifth “time”, τ , in a Langevin equation where the noise has been set to zero. The
appropriate D+1 dimensional gauge covariant set of partial differential equations is

F5ν = DµFµν , (2.10)

where we use continuum notation also for the gauge fields and have set τ = x5. These equations
have only an O(D) invariance, not O(D+1). They are first order in x5 and second order in xµ ,µ =
1,2,3,4. Gauge fixing to A5 = 0 and going back to τ , we get

∂Aµ

∂τ
= DµFµν (2.11)

with a residual 4D gauge invariance – see [12] for references to earlier work on similar equations.
The parameter τ tells us, in units of length-squared (2.9), the rough amount of regularizing

“fat” that has been added to the loop. All ultraviolet divergences of Wilson loop operators are
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eliminated as soon as τ > 0. These would include corner divergences if there were any; on the
lattice there always will be.

We take τ proportional to the physical perimeter of the loop squared for small loops, and
approaching a constant length squared (relatively small relative to Λ

−2
N ) for large loops. This is

done in order to remain sensitive to the short distance structure of the theory for small loops while
allowing large loops to have only a modest amount of thickness. The confinement of the fat loops
will still be governed by exponential terms with the same σk one would have extracted from bare
Wilson loops, which were not fattened.

3. Surfaces

The need to smear the loops and to adjust a number of order N of finite parts renders the
renormalized Q(z,C ) observable somewhat inelegant. This leads us to the idea of looking at less
singular objects than lines – less singular means that more displacement directions are allowed.
The simplest step in this direction is to replace the curve by a 2-dimensional surface Σ, described
by xµ(σ) (σα ,α = 1,2). We put massive Dirac fermions on Σ, which is characterized by a single
scale l. At zero mass, one has chiral symmetry and the fermionic determinant is the exponent of the
Polyakov–Wiegmann action [13]. The gauge connection on Σ is aα = Aµ(x(σ)) ∂xµ

∂σα
. The massless

Dirac operator is D2(Σ) = γα [∂σα
− iaα(σ)] and our new observable becomes

Q(µ,Σ) = 〈
∫

[dψ̄dψ]e
∫

Σ
d2σψ̄(σ)[D2(Σ)−µ]ψ(σ)〉 (3.1)

The possible counterterms are built out of currents on the surface: J j
α(σ) = ψ̄(σ)γαT jψ(σ),

Jα = ψ̄(σ)γαψ(σ). So, only two ct-s, L1 = J j
αJ j

α , L2 = JαJα are now available. In 4D one
has logarithmic divergences, and L1 will be generated, but in 3D no ct-s are generated because the
theory is superrenormalizable.

At N = ∞ a SχSB transition is possible, depending on l; for a finite surface, this is a large
N phase transition, analogue to the one occurring in the smeared Wilson loops. For finite N this
transition disappears.

The lattice version of Q(µ,Σ) is straightforward to construct: we used the overlap operator for
D2 [14] to ensure a precise definition of the location of spontaneous chiral symmetry breaking on
the lattice.

4. Results in 3D

As said, no extra renormalization necessary in 3D. We set µ = 0 and N = ∞. For an infinite
plane we find 〈ψ̄ψ〉N=∞ = 0.29(1)√σ f , where σ f is the k = 1 string tension in the pure YM theory.
For a cylinder with square base of side s we establish that spontaneous chiral symmetry breaking
occurs when s > sc, while for s < sc chiral symmetry is preserved. For s > sc with (s− sc)/sc� 1
we have 〈ψ̄ψ〉N=∞(s) ∝ (s− sc)1/2. The critical size is found to be sc = 1.4(1)/√σ f .
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5. Outlook

In 3D the definition of the curve related observable that exhibited the large N phase transition
required extra regularization which we implemented as smearing. Moving from curves to surfaces
eliminated this smearing. In 4D there are further obstacles which we have to learn how to overcome.
However, the number of ct-s is independent of N now.

In 3D, we described above two unambiguously defined N = ∞ scales, 〈ψ̄ψ〉 and sc. We are
looking for analytical ways to estimate these scales.
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