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Field theories with extra dimensions live in a limbo. While their classical solutions have been the

subject of considerable study, their quantum aspects are difficult to control. A special class of such

theories are anisotropic gauge theories. The anisotropy was originally introduced to localize chiral

fermions. Their continuum limit is of practical interest and it will be shown that the anisotropy

of the gauge couplings plays a crucial role in opening the phase diagram of the theory to a new

phase, that is separated from the others by a second order phase transition. The mechanism behind

this is generic for a certain class of models, that can be studied with lattice techniques. This leads

to new perspectives for the study of quantum effects of extradimensions.
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Extra dimensions1 lead a troubled existence in field theory, since quantum field theories in
more than four dimensions are plagued by untameable ultraviolet divergences, rendering any cal-
culation, beyond the solution of the equations of motion, sensitve to the details ofthe regularization
used. The lattice regularization has the advantage that it can be used to probe perturbative as well
as non-perturbative aspects and thus provide hints about this sensitivity. We will use it to study a
particular class of theories, anisotropic gauge theories [1] (with compactgauge group). We want
to see what effect the anisotropy has on the order of the transitions between the various phases
(so we specialize to the case of compactU(1)). While there has been a fair amount of numerical
work [2, 3, 4, 5], the reasonwhy a second order phase transition should, indeed, appear, has not
been really spelled out. So it’s useful to see how this could happen in a concrete example–as well
as what could prevent its appearence. In addition, the method used has awider applicability and
deserves being recalled.

The action is in Wilson form

S= β ∑
n

∑
1≤µ<ν≤d‖

(
1−Re

[
Uµν

])
+β ′∑

n
∑

d‖+1≤µ<ν≤d‖+d⊥

(
1−Re

[
Uµν

])
(1)

corresponding to the situation illustrated in fig. 1 ford‖ = 2 andd⊥ = 1 We shall use a technique

x

x 3

x1

2

Figure 1: An example inD = d‖+d⊥ = 3, withd‖ = 2 andd⊥ = 1. The plaquettes in the(x2,x3) and(x3,x1)

planes enter with coefficientβ ′ in the action; the plaquettes in the(x1,x2) plane enter with coefficientβ .

developed for implementing the mean field approximation in systems with local symmetries to
obtain the phase diagram, namely a trick introduced in ref. [6] (we use it in theform presented
in [1, 7]).

1More than the three spatial dimensions we typically perceive. We stick to onetime dimension.
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We insert in the partition function,

Z[J] =
∫

[DU ]e−S[U ]+∑n Re(Jµ (n)Uµ (n)) (2)

the expression

1 =
∫ [

∏
links

∫
dRe(Vl )dIm(Vl )δ (Re(Vl )−Re(Uµ(n)))δ (Im(Vl )− Im(Uµ(n)))

]
(3)

to decouple the gauge links

Z[J] =
∫

[DU ] 1︸︷︷︸
eq(3)

×e−S[U ]+∑n Re(Jµ (n)Uµ (n)) =

∫ [

∏
links

∫
dRe(Vl )dIm(Vl )

dαR
l

2π
dα I

l

2π

]
e−Seff[Re(Vl ),Im(Vl ),αR

l ,α I
l ,J

R
l ,JI

l ]

(4)

where the effective action,Seff[Re(Vl ), Im(Vl ),αR
l ,α I

l ,J
R
l ,JI

l ] stands for

S[Re(Vl ), Im(Vl )]−∑
l

(Re(Jl )Re(Vl )− Im(Jl )Im(Vl ))+ i ∑
l

αR
l Re(Vl )+ i ∑

l

α I
l Im(Vl )

−∑
l

w(αR
l ,α I

l )
(5)

andw(αR
l ,α I

l ) contains the information about the gauge group,

ew(αR
l ,α I

l ) ≡
∫

DUei(αR
l Re(Uµ )+α I

l Im(Uµ )) (6)

So far we have an exact transcription: we have traded theconstrainedvariables,Uµ(n) (that must
satisfy[Re(Uµ(n))]2 +[Im(Uµ(n))]2 = 1), for theunconstrainedvariables,αR

l ,α I
l ,Re(Vl ), Im(Vl ).

It is, indeed, the existence of the constraint that leads to a non-trivial dependence on the coupling
constant(s) of the effective action thus obtained, already at the “classical” level.

The effective action seems to have acquired terms that are complex–however the way they
enter allows us to perform a “Wick rotation”, iαR

l ≡ α̂R
l , iα I

l ≡ α̂ I
l and obtain an action that is

manifestly real:

Seff(α̂R
l , α̂ I

l ,Re(Vl ), Im(Vl )) = S[Re(Vl ), Im(Vl )]+∑
l

(
α̂R

l Re(Vl )+ α̂ I
l Im(Vl )

)
−∑

l

w(α̂R
l , α̂ I

l ) (7)

We can, in fact, use this action for Monte Carlo simulations–but, also, for analytical computations,
that are much easier to perform, since we have solved the constraints [6, 7, 8].

We now specialize eq. 7 to the case of the action in eq. (1) and look for extrema that are
uniform along thed‖–dimensional respectively along thed⊥ extra dimensions:Vl ≡ v, for links
that belong in thed‖–dimensional subspaces andVl ≡ v′ for links that “point out” along thed⊥
extra dimensions. Similarlŷαl ≡ α̂ within the d‖ dimensional subspaces andα̂l ≡ α̂ ′ along the
d⊥ extra dimensions. A plaquette that lies in thed‖–dimensional subspace makes the following
contribution to the effective action

Re[Uµν(n)]
∣∣
1≤µ<ν≤d‖

= Re[(vR+ ivI )(vR+ ivI )(vR− ivI )(vR− ivI )] = ([vR]2 +[vI ]2)2 (8)
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Similarly, a plaquette that lies in thed⊥–dimensional subspace contributes the expression

Re[Uµν(n)]
∣∣
dparallel+1≤µ<ν≤d‖+d⊥

= ([v′R]2 +[v′I ]2)2 (9)

A plaquette that “spans” the subspace between twod‖–dimensional subspaces contributes

Re[Uµν(n)]
∣∣
1≤µ≤d‖<ν≤d‖+d⊥

= Re((vR+ ivI )(v′R+ iv′I )(vR− ivI )(v′R− iv′I ))) =

([vR]2 +[vI ]2)([v′R]2 +[v′I ]2)
(10)

Simple counting allows us to write down the expression for the effective actionfor such uniform
configurations:

Seff[v
R,vI ,v′R,v′I , α̂R, α̂ I , α̂ ′R, α̂ ′I ] = β

d‖(d‖−1)

2

(
1− ([vR]2 +[vI ]2)2)+

β ′d⊥(d⊥−1)

2

(
1− ([v′R]2 +[v′I ]2)2)+β ′d⊥d‖

(
1− ([vR]2 +[vI ]2)([v′R]2 +[v′I ]2)

)
+

d‖
(
α̂RvR+ α̂ I vI −w(α̂R, α̂ I )

)
+d⊥

(
α̂ ′Rv′R+ α̂ ′I v′I −w(α̂ ′R, α̂ ′I )

)
(11)

For the case of compactU(1) the gauge group integral is given in terms of elementary functions:

ew(α̂R,α̂ I ) =
∫ π

−π

dθ
2π

eα̂Rcosθ+α̂ I sinθ =
∫ π

−π

dθ
2π

e
√

[α̂R]2+[α̂ I ]2 cos(θ−φα̂ ) ≡ I0

(√
[α̂R]2 +[α̂ I ]2

)
(12)

whereI0(·) is the modified Bessel function.
We notice that the group integral depends only on the length of the “vector(s)”(α̂R, α̂ I )–and

that the plaquette terms in the effective action depend only on the length of the “vector(s)”(vR,vI ).
The two vectors are coupled only through their “scalar product”,α̂RvR+ α̂ I vI , which depends on
their lengths and theirrelativeorientation. This means that we canchoosea convenient coordinate
system in this space and, as long as the corresponding symmetry isn’t spontaneously broken, we
can simplify the calculations considerably. We thus choose the orientations sothatvI = 0, v′I = 0,

α̂ I = 0, α̂ ′I = 0. Indeed we easily check that this choice is a solution of the equations for the
extrema of the effective action. In a sense this amounts to “choosing a gauge” in this theory. To

simplify notation we henceforth setvR ≡ v, v′R ≡ v′, α̂R ≡ α̂, α̂ ′R ≡ α̂ ′.
In this “gauge”, therefore, the action takes the form

Seff[v,v
′, α̂, α̂ ′] = β

d‖(d‖−1)

2

(
1−v4)+β ′d⊥(d⊥−1)

2

(
1−v′4

)
+β ′d‖d⊥

(
1−v2v′2

)
+

d‖(α̂v−w(α))+d⊥(α̂ ′v′−w(α ′))
(13)

Compactness of the gauge group implies thatw(0) = 1 and∞ > w′′(0) > 0. In addition,w′(0) = 0.
These features may be seen to hold for compactU(1)–but they hold foranycompact group.

The extrema of the effective action are solutions of the equations

v = dw(α̂)/dα̂
v′ = dw(α̂ ′)/dα̂ ′

α̂ = 2βd‖(d‖−1)v3 +2β ′d‖d⊥vv′2

α̂ ′ = 2β ′d⊥(d⊥−1)v′3 +2β ′d‖v
2v′

(14)
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These equations always possess the solution(α̂, α̂ ′,v,v′) = (0,0,0,0) that corresponds to the con-
fining phase–the string tension is infinite. However they also have non-zero solutions, that depend
on the values of the couplingsβ andβ ′. The reason this is possible is that uniform configurations
are only invariant under global (constant) gauge transformations–andElitzur’s theorem [9] holds
only if local transformations are possible. Thus it isnot a contradiction of Elitzur’s theorem but
rather a consequence of the fact that the assumption behind it does not hold for the configuration
under study.

We thus find a solution with(α̂, α̂ ′,v,v′) 6= (0,0,0,0), which corresponds to ad‖+d⊥–dimensional
Coulomb phase (since Wilson loops with perimeterL = L1 +L2 behave asvL, v′L or vL1v′L2).

However there also exists a solution witĥα 6= 0,v 6= 0, α̂ ′ = 0,v′ = 0. In this phase (named
the “layered phase” in ref. [1]) the Wilson loops show perimeter behaviorwithin ad‖–dimensional
subspace (sincev 6= 0) and show confinement along thed⊥ directions, sincev′ = 0. There isn’t
any “bulk” at all: thed‖ + d⊥–dimensional space has become a stack ofd‖–dimensional layers.
Since the string tension is infinite the layers are infinitely thin and the theory on them is local.
Corrections to the mean field approximation will make this string tension finite–the layers will
acquire a thickness, inversely proportional to the (square root of the)string tension and the theory
will display non-localfeatures, if probed at such length scales. For this to be consistent this string
tension should be much larger than the tension of the fundamental string.

In all cases considered here the boundary conditions are assumed to beperiodic, but all di-
mensions are assumed to become infinite in the continuum limit.

It is interesting to try and see whether the transition from one phase to another can become
continuous. Indeed the mean field approximation to lattice gauge theories typically predicts first
order (discontinuous transitions). The reason can be understood from the expression of the action:
the plaquette terms, in the isotropic case, are quartic in the link variables. The only terms that can
contribute to quadratic order are the “constraint” terms,α̂v−w(α̂). If we replacev = dw(α̂)/dα
and expand to quadratic order, aroundα = 0, we find that this point corresponds to a minimum of
the effective action,that can never become a maximum. Therefore, if another minimum appears for
α 6= 0, the transition is, necessarily, of first order. Such a minimum, corresponding to a Coulomb
phase, is only credible for a theory with aU(1) factor: the putative Coulomb phase turns out
to be an artefact of the mean field appoximation [8] for Yang–Mills theories witha simple Lie
group and Monte Carlo simulations indicate that they are always confining atstrong coupling and
asymptotically free at weak couling [10].

In the case under study here, however, there is a term in the action thatcan destabilize the
confining phase in a way consistent with a continuous transition: the term

Smixed
eff = β ′d‖d⊥(1−v2v′2) (15)

is quadratic in the link variables, due to the anisotropy. And these variables enter with a sign that
allows them to destabilize the confining phase along thed⊥ directions. To see this we expand
the effective action around the solution(α̂, α̂ ′ = 0), which exists forβ large enough andβ ′ small
enough, within the subspace wherev= dw(α̂)/dα̂ andv′ = dw(α̂ ′)/dα̂ ′. So we considerα ′ small
enough that we may expand aroundα̂ ′ = 0 to quadratic order–but we retain the exact dependence

5
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on α . We find

Seff[v,v
′, α̂, α̂ ′] ≈ Seff[v,0, α̂,0]+ α̂ ′2w′′(0)d⊥

[
−β ′d‖v

2(α̂)w′′(0)+
1
2

]
(16)

This expression depends onβ implicitly, sinceα̂ = α̂(β ). If v(α̂) 6= 0–the system is in the Coulomb
phase within ad‖–dimensional subspace–there is a line,

β ′
crit(β ) =

1
2d‖v2(α̂)w′′(0)

(17)

such that, forβ ′ < β ′
crit the system is in the layered phase and forβ ′ > β ′

crit it is in the d‖ + d⊥–
dimensional Coulomb phase through a continuous transition. ForU(1), in particular,w′′(0) = 1/2
andv(α̂) is a bounded faunction of̂α(β ), that tends to 1 aŝα(β ) → ∞. In that limit, which is
relevant asβ → ∞, we obtain thatβ ′

crit → 1/d‖, a result that is compatible with the mean field
approximation, which may be considered an expansion in 1/d‖ (and was found in another way in
ref. [1]). This has further interesting consequences since, many years ago, Peskin [11] noted that at
a second order phase transition point the static quark–anti-quark potential, derived from the Wilson
loop, would display 1/Rbehavior independently of the dimensionality. To date an example of such
a system was not available. Anisotropic lattice gauge theories with aU(1) factor could provide
such an example and it will be interesting to explore its consequences further through Monte Carlo
simulation.

In conclusion we have identified the mechanism that is behind the transition from the layered
phase to the bulk Coulomb phase for anisotropic lattice gauge theories, whose symmetry group
contains aU(1) factor. Monte Carlo simulations to check its validity beyond the mean field ap-
proximation are certainly called for and the theory in the continuum limit, especiallyin the presence
of matter, remains to be constructed. Theories withU(N) ∼U(1)×SU(N) symmetry group have
been studied in four dimensions [12] and the special behavior of theU(1) factor had been remarked
upon–it would be most interesting to study quantitatively the role of the anisotropy. One expects
theU(1) factor to trigger the appearence of the layered phase [13].
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