PROCEEDINGS

OF SCIENCE

Very high order lattice perturbation theory for
Wilson loops

R. Horsley?, G. Hotzel®, E.-M. ligenfritz®d, Y. Nakamura®, H. Perlt®, P. E. L. Rakow",
G. Schierholz9, A. Schiller?

aSchool of Physics, University of Edinburgh, Edinburgh ERZ,3UK

bInstitut fir Theoretische Physik, Universitét Leipzig108 Leipzig, Germany

CFakultat fur Physik, Universitat Bielefeld, 33501 BieldfegGermany

dInstitut fiir Physik, Humboldt-Universitat zu Berlin, 184Berlin, Germany

€Institut fir Theoretische Physik, Universitat Regenspb@8P40 Regensburg, Germany

fTheoretical Physics Division, Department of Mathemat®eiences, University of Liverpool,
Liverpool L69 3BX, UK

9Deutsches Elektronen-Synchrotron DESY, 22603 Hambungn&e/

E-mail: perlt@itp.uni-leipzig.de

We calculate perturbative Wilson loops of various sizesodpap ordem = 20 at different lattice
sizes for pure plaquette and tree-level improved Symarailgg theories using the technique of
Numerical Stochastic Perturbation Theory. This allowsausivestigate the behavior of the per-
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1. Introduction

Since the introduction of the non-perturbative gluon condensate by Shifviainshtein and
Zakharov [1] there have been many attempts to obtain reliable numericlisrigsithis quantity.
Soon it became clear that lattice gauge theory provides a promising tool tdatalit from Wilson
loopsWim of sizesN x M. In [2, 3] the plaquette was used whereas larger Wilson loops have been
investigated in [4, 5]. In all cases it turned out to be crucial to know thiugmative tail of the
Wilson loops as precisely as possible. In the last decade the applicatiaimuéridal Stochastic
Perturbation Theory (NSPT) [6] pushed the perturbative order opldguette up to order= 10
[7] and evem = 16 [8].

Apart from the extraction of the gluon condensate there is a generagsnierthe behavior
of perturbative series in QCD (for a recent investigation see [9]). Heiserally believed that
these series are asymptotic, and assumed that for tettge leading growth of the coefficiensg
is factorial. Using the technique of NSPT one reaches orders of therlpatitie series where a
possible set-in of this assumed behavior can be tested - at least for finitedattica more recent
paper [10] Narison and Zakharov discussed the difference betalemm and long perturbative
series and its impact on the determination of the gluon condensate.

In order to test to what exter(a?) improvement influences the behavior of the series we
used in addition to the standard Wilson plaquette gauge action the tree-level/ad@Bymanzik
gauge action obtained by Weisz implementing Symanzik’'s improvement progratiine [

We present perturbative calculations in NSPT up to order20 for Wilson loops using the
Wilson action for lattice size&* with L = 4,6,8,12. In case of the Symanzik action we have
computed th&ém for L = 4,6,8,10. The computation fdr = 12 were performed on a NEC SX-9
computer of RCNP at Osaka University, for= 10 at the HLRN Berlin/Hannover, all others on
Linux/HP - clusters at Leipzig University.

2. NSPT calculation up ton= 20

NSPT allows perturbative calculations on a finite lattice up to loop andehich practically
cannot be reached by the standard diagrammatic approach. A limitis sétyostlyrage limitations
and machine precision. The algorithm is introduced and discussed in dd&illi?] — we will not
present itin this paper. For a detailed discussion of our results wetoeddorthcoming paper [13].

In order to fix the notation we write the general expansion of a Wilson logizefN x M in
terms of the bare lattice couplirggas

20
Wiy = wam 9" 2.1)
n=

The coefficientS/V,\(,',‘\ZI are determined with NSPT and need to be known to a very good precision.
In Figure 1 we show some results for these coefficients using the Wilso®wmndnzik actions.
One can see from that Figure that the statistical errors within the NSPTitatgare rather small.

At all n all the loops behave rather similarly, with the coefficents decreasing smointtay
similar way for all loop sizes. At smaller we see that the coefficients change sign and magni-
tude in a rather unpredictable way, particularly for large loops. We rézegsome remarkable
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Figure 1: Selecte

,\(l',gl for L = 12 and Wilson action (left) and fdr = 10 and Symanzik action (right).

Positive/negative signs of the coefficients are given byndip# symbols.

differences in the behavior between the two actions. First, for the Symactti the sign change
in the expansion coefficients sets in at smaller Wilson loop $izedM and is extended to larger
loop ordersn. Second, the values of the Symanzik coefficients themselves are much sheller
their Wilson action counterparts. However, concerning the relativeergance behavior of the
perturbative series (2.1) one should have in mind that the cougfingsed in computing physi-
cal observables is larger in the Symanzik case than in the Wilson case.gAt e seemingly
asymptotic behavior (without sign changes) emerges.

One essential test for the validity of our perturbative calculations with NSEME signal/noise
ratio. The expansion of the (integer) loop-orads constructed from even powegd'. Likewise
one can build non-loop contributions which are half-integer and combioed édd powers of -
they should vanish. In Fig. 2 we show that the loop contributions are alal@arly separated in
magnitude from the non-loop (noise) terms.

In addition we have to raise the question about the infinite volume lirit o of the loop
series. This is related to the definition of the gluon condensate which is chelary o quantity.
We follow the approach to extrapolate each coefficient at finitl@m W,\(,r,'JLL to W,\(,T\BLOo using the
ansatz

W,\(Ir&L = aNM7n+bNM,n L74+CNM,n Iog(L) L6, (2.2)

3. Perturbative seriesat large order

It is generally assumed that perturbative series in continuum QCD anepéstjc. The sit-
uation might be different for perturbative series on finite lattices. Herdawe both ultraviolet
and infrared cut-offs and the series could be summed up to a finite value. owfitbtomputed
coefficients up to ordem = 20 we are able to check this conjecture to a so far unrivaled level.

To perform such a summation we propose a model which is a generalizattomarisatz used
in [14]. Denoting the generic coefficients of the perturbative serieg @& have found that a large
set of our data above some loop ordgrcan be described rather well by the following ansatz for
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Figure 2: SelecteoW,fﬂ> versusn together with typical sizes (in magnitude) of non-loop cimittions.
Positive/negative signs of the coefficients are given bynéfp# symbols. Left:L = 12 and Wilson gauge
action, right:L = 10 and Symanzik action. Points at half-integgthe non-loop terms) are pure noise - they
show a good signal/noise ratio.

the ratio of subsequent coefficients

rn:cn/cn_1:u<1— n>ng, (3.2)

1
+ v) I
n n(n+s)
whereu, y, p,s are free parameters to be fitted. The series based on (3.1) can be sumiteed u

n=oo for g2 < 1/u. Forng = 1 we obtain as solution

_(s+ 1)W,\(ﬁ\3I oF1((14+s—y)/2—1,(1+5—y)/2+T;s+1;0%U)
WM = p—(s+1)uy ’ (3-2)
r=2/((y+s+12u-dp)/u.

As final hypergeometric model ag = 1 we use

1
~Win) &%,
wherecy Hyp is the coefficient og2 in the correspondingz—expansion o¥Wum,». For other values
of ng the formulae (3.2) and (3.3) change accordingly. In Fig. 3 we show twmple plots for
the ratior, together with the model fit based on (3.1). In all investigated cases wetdadserve a
factorial growth of the coefficients up to ordee= 20. Formally, one can use model (3.3) (used for
finite lattices) also for th& — « extrapolated coefficients.

A possible alternative method consists in applying boosted perturbatiorytheor a rear-
rangement of the series in terms of a boosted couging8] (W11 = P). Using the summed

perturbative serieBy-(g?) = 1+ 57, Wl('l’) g?" we get the boosted summed plaquéig(gs) as
follows

WM, HY P = WM, — (3.3)

(CLhvp

N
P20(9)

2 2
—0p=

g 20b<gb —1+ Z b11gb . (3-4)

n=1
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Figure 3: Domb-Sykes plots fow ;. Left: L = 12 and Wilson action, right: = 8 and Symanzik action.

In Fig. 4 we compare the summed perturbative seie®) with Py »(gp) as function of maximal
loop ordem* for L = 12. One clearly recognizes a distinct plateau reached by boosting f020.
The naive series is far from the model value computed from (3.3). Altholig behavior of the
boosted perturbation theory is found for finitewe assume that it remains valid also in the infinite
volume limit.

0.58

T . T T T T
hypergeometric model hypergeometric model

Plg) e Plg) e
Py(gs A PY Py(gs A
09 | { .
5 0.575 ° 9
L=12,¢>=1.04 . L=12¢%=1.04
0.8 | . N
° [ )
Qf 0.7 4 Qi 0.57 + PY °
® A [ ] ° °
06 ®egq . - L
A rar |
05 L | 0.565 R
A A A A A A a A a N a .
04+ , -
. . . . . 5 . . . . . . .
0 5 10 15 20 8 10 12 14 16 18 20
n* n*

Figure4: Perturbative plaquette, as function of loop ordem* for naive and boosted series; left: all orders,
right: zoomed in by the choice8 n* < 20. The choice? = 1.04 corresponds to the largest coupling where
the solution (3.2) remains real.

4. Non-perturbative gluon condensate

Having under control the large order perturbative series we estimatéheowon-perturbative
gluon condensaté as/m)GG). Being a physical quantity we should use the- « extrapolated
values of the perturbative coefficients. On the other hand it could Helduseet numbers for the
"gluon condensate" at finite also: they provide some numerical insight how the infinite volume
limit is approached.

We use the relation between the plaquette measured in Monte Carlo simuRjoasd its
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perturbative analogue:

36
which defines the gluon condensate. In (431y) denotes the standafiHfunction with by being
its leading coefficient. From (4.1) it is obvious that the precision of the rdiffeeAP = P — Byc

determines the reliability of an estimate fg£GG).
It has been proposed [10] to extract the gluon condensate taking ioboirgtca perturbative

series of the plaquette summed to an orfe{R,-) from the following ansatz

4T [ —bog?
° <13(g)

36
whereAP,. contains possible? anda®* contributions

7 (bo?\ s
Rvc =P+a*l (%) (%GG>, 4.1)

) <%SGG> = APy =Py —Puc, (4.2)

APy = co(n*) @+ c4(n*) a’. (4.3)

The authors in [10] argued that non-zero values of the coefficignt) are an artefact due to a
truncation of the series: above some valuaothis coefficient should vanish. Our perturbative
series for both, the naive series (finiteand boosted serie& & «) confirm their hypothesis: for
boosted perturbation theory tlaé-term decreases rapidly to zero for> 10 (see left of Fig. 5);
for naive perturbation theory and finiteone has to sum the series to much langfer
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Figure 5: Left: Comparison ofc4(n*) and cp(n*) for naive and boosted) perturbation theory in the
extrapolated limil. = c. Right: AP/(a/ro)? as function of(a/ro)? for boosted perturbation theory. The
line is a linear fit ina? for the range M2 < (a/rp)? < 0.08,ro denotes the Sommer scale.

From the results obtained so far we conclude that the most reliable estimdtee fgluon
condensate can be obtained for the Wilson action using boosted pertarttegary. In the right
of Figure 5 we showAP/(a/ro)? as function of(a/rg)? using boosted perturbation theory with
n* = 20 and our own non-perturbative plaquette measurements at diff@realues and lattice
sizes forg/a > 2.5. We clearly recognize a dominant line&roehavior. The necessary conversion
B < (a/ro) is accomplished for the plaquette action by the Necco-Sommer relation [15].

In Table 1 we give numbers for the quant{tyrs/ 1)G G) for finite L and boosted perturbation
theory atlL = . For the perturbative values at finitewe use the hypergeometric model as given
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in (3.3). The table shows that the boosted result for extrapolatierr agrees within errors with
the model value at finite lattice size= 12. The given errors have been estimated by varying the
fit window Bmin < B < Bmax Our reference value for the gluon condensate is thatt ferco and

L rg(£GG) | (2GG) [GeV4| fit range

6 1.08(10) 0.0343) |573<p <6.00

8 1.22(11) 0.0394) |578<p<6.10

12 1.29(17) 0.041(6) |578<p <627
%, boosted| 1.33(7) 0.0422) |578<p <617

Table 1: Gluon condensate at finitefor Wilson gauge actionr§ = 0.467 fm). The last column shows the
usedg-fit range.

boosted perturbation theory given in Table 1. With the chogdris larger than the value obtained
by sum rule calculations [1].
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