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We calculate perturbative Wilson loops of various sizes up to loop ordern= 20 at different lattice

sizes for pure plaquette and tree-level improved Symanzik gauge theories using the technique of

Numerical Stochastic Perturbation Theory. This allows us to investigate the behavior of the per-

turbative series at high orders. We observe differences in the behavior of perturbative coefficients

as a function of the loop order. Up ton = 20 we do not see evidence for the often assumed facto-

rial growth of the coefficients. Based on the observed behavior we sum this series in a model with

hypergeometric functions. Alternatively we estimate the series in boosted perturbation theory.

Subtracting the estimated perturbative series for the average plaquette from the non-perturbative

Monte Carlo result we estimate the gluon condensate.
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1. Introduction

Since the introduction of the non-perturbative gluon condensate by Shifman, Vainshtein and
Zakharov [1] there have been many attempts to obtain reliable numerical results for this quantity.
Soon it became clear that lattice gauge theory provides a promising tool to calculate it from Wilson
loopsWNM of sizesN×M. In [2, 3] the plaquette was used whereas larger Wilson loops have been
investigated in [4, 5]. In all cases it turned out to be crucial to know the perturbative tail of the
Wilson loops as precisely as possible. In the last decade the application of Numerical Stochastic
Perturbation Theory (NSPT) [6] pushed the perturbative order of theplaquette up to ordern = 10
[7] and evenn = 16 [8].

Apart from the extraction of the gluon condensate there is a general interest in the behavior
of perturbative series in QCD (for a recent investigation see [9]). It isgenerally believed that
these series are asymptotic, and assumed that for largen the leading growth of the coefficientsan

is factorial. Using the technique of NSPT one reaches orders of the perturbative series where a
possible set-in of this assumed behavior can be tested - at least for finite lattices. In a more recent
paper [10] Narison and Zakharov discussed the difference betweenshort and long perturbative
series and its impact on the determination of the gluon condensate.

In order to test to what extentO(a2) improvement influences the behavior of the series we
used in addition to the standard Wilson plaquette gauge action the tree-level improved Symanzik
gauge action obtained by Weisz implementing Symanzik’s improvement programme [11].

We present perturbative calculations in NSPT up to ordern = 20 for Wilson loops using the
Wilson action for lattice sizesL4 with L = 4,6,8,12. In case of the Symanzik action we have
computed theWNM for L = 4,6,8,10. The computation forL = 12 were performed on a NEC SX-9
computer of RCNP at Osaka University, forL = 10 at the HLRN Berlin/Hannover, all others on
Linux/HP - clusters at Leipzig University.

2. NSPT calculation up to n = 20

NSPT allows perturbative calculations on a finite lattice up to loop ordern which practically
cannot be reached by the standard diagrammatic approach. A limit is set onlyby storage limitations
and machine precision. The algorithm is introduced and discussed in detail in[6, 12] – we will not
present it in this paper. For a detailed discussion of our results we referto a forthcoming paper [13].

In order to fix the notation we write the general expansion of a Wilson loop ofsizeN×M in
terms of the bare lattice couplingg as

WNM =
20

∑
n=0

W(n)
NM g2n . (2.1)

The coefficientsW(n)
NM are determined with NSPT and need to be known to a very good precision.

In Figure 1 we show some results for these coefficients using the Wilson andSymanzik actions.
One can see from that Figure that the statistical errors within the NSPT algorithm are rather small.

At all n all the loops behave rather similarly, with the coefficents decreasing smoothly, in a
similar way for all loop sizes. At smallern we see that the coefficients change sign and magni-
tude in a rather unpredictable way, particularly for large loops. We recognize some remarkable
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Figure 1: SelectedW(n)
NM for L = 12 and Wilson action (left) and forL = 10 and Symanzik action (right).

Positive/negative signs of the coefficients are given by open/full symbols.

differences in the behavior between the two actions. First, for the Symanzikaction the sign change
in the expansion coefficients sets in at smaller Wilson loop sizesN×M and is extended to larger
loop ordersn. Second, the values of the Symanzik coefficients themselves are much smallerthan
their Wilson action counterparts. However, concerning the relative convergence behavior of the
perturbative series (2.1) one should have in mind that the couplingg2 used in computing physi-
cal observables is larger in the Symanzik case than in the Wilson case. At larger n a seemingly
asymptotic behavior (without sign changes) emerges.

One essential test for the validity of our perturbative calculations with NSPTis the signal/noise
ratio. The expansion of the (integer) loop-ordern is constructed from even powersg2n. Likewise
one can build non-loop contributions which are half-integer and combined from odd powers ofg -
they should vanish. In Fig. 2 we show that the loop contributions are always clearly separated in
magnitude from the non-loop (noise) terms.

In addition we have to raise the question about the infinite volume limitL → ∞ of the loop
series. This is related to the definition of the gluon condensate which is clearlya L = ∞ quantity.
We follow the approach to extrapolate each coefficient at finiteL from W(n)

NM,L to W(n)
NM,∞ using the

ansatz

W(n)
NM,L = aNM,n +bNM,nL−4 +cNM,n log(L)L−6 . (2.2)

3. Perturbative series at large order

It is generally assumed that perturbative series in continuum QCD are asymptotic. The sit-
uation might be different for perturbative series on finite lattices. Here wehave both ultraviolet
and infrared cut-offs and the series could be summed up to a finite value. Withour computed
coefficients up to ordern = 20 we are able to check this conjecture to a so far unrivaled level.

To perform such a summation we propose a model which is a generalization ofthe ansatz used
in [14]. Denoting the generic coefficients of the perturbative series ascn we have found that a large
set of our data above some loop ordern0 can be described rather well by the following ansatz for
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Figure 2: SelectedW(n)
N1 versusn together with typical sizes (in magnitude) of non-loop contributions.

Positive/negative signs of the coefficients are given by open/full symbols. Left:L = 12 and Wilson gauge
action, right:L = 10 and Symanzik action. Points at half-integern (the non-loop terms) are pure noise - they
show a good signal/noise ratio.

the ratio of subsequent coefficients

rn = cn/cn−1 = u

(

1−
1+ γ

n

)

+
p

n(n+s)
, n > n0 , (3.1)

whereu,γ, p,s are free parameters to be fitted. The series based on (3.1) can be summed up to
n = ∞ for g2 < 1/u. Forn0 = 1 we obtain as solution

WNM,∞ =
(s+1)W(1)

NM 2F1
(

(1+s− γ)/2− τ,(1+s− γ)/2+ τ;s+1;g2u
)

p− (s+1)uγ
, (3.2)

τ =
1
2

√

((γ +s+1)2u−4p)/u.

As final hypergeometric model atn0 = 1 we use

WNM,HYP = WNM,∞ − (c1,HYP−W(1)
NM)g2 , (3.3)

wherec1,HYP is the coefficient ofg2 in the correspondingg2-expansion ofWNM,∞. For other values
of n0 the formulae (3.2) and (3.3) change accordingly. In Fig. 3 we show two example plots for
the ratiorn together with the model fit based on (3.1). In all investigated cases we do not observe a
factorial growth of the coefficients up to ordern = 20. Formally, one can use model (3.3) (used for
finite lattices) also for theL → ∞ extrapolated coefficients.

A possible alternative method consists in applying boosted perturbation theory, i.e. a rear-
rangement of the series in terms of a boosted couplinggb [8] (W11 ≡ P). Using the summed
perturbative seriesPn⋆(g2) = 1+ ∑n⋆

n=1 W(n)
11 g2n we get the boosted summed plaquetteP20,b(gb) as

follows

g2 → g2
b =

g2

P20(g)
→ P20,b(gb) = 1+

20

∑
n=1

W(n)
b,11g2n

b . (3.4)

4



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
2
6
4

Very high order lattice perturbation theory for Wilson loops H. Perlt

æ

æ

æ

æ

æ
æ
æ
æ
ææ
ææ
æææ
ææææ

0.1 0.2 0.3 0.4 0.5
1�n

0.2

0.4

0.6

0.8

cn�cn-1

W11, L=12, Wilson

æ

æ

æ

æ
æ

æ
æ
ææ

ææ
æææ
ææææ
æ

0.1 0.2 0.3 0.4 0.5
1�n

0.2

0.4

0.6

0.8

cn�cn-1

W11, L=8, Symanzik

Figure 3: Domb-Sykes plots forW11. Left: L = 12 and Wilson action, right:L = 8 and Symanzik action.

In Fig. 4 we compare the summed perturbative seriesPn⋆(g) with Pn⋆,b(gb) as function of maximal
loop ordern⋆ for L = 12. One clearly recognizes a distinct plateau reached by boosting forn⋆ < 20.
The naive series is far from the model value computed from (3.3). Although this behavior of the
boosted perturbation theory is found for finiteL, we assume that it remains valid also in the infinite
volume limit.
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Figure 4: Perturbative plaquettePn⋆ as function of loop ordern⋆ for naive and boosted series; left: all orders,
right: zoomed in by the choice 8≤ n⋆ ≤ 20. The choiceg2 = 1.04 corresponds to the largest coupling where
the solution (3.2) remains real.

4. Non-perturbative gluon condensate

Having under control the large order perturbative series we estimate nowthe non-perturbative
gluon condensate〈(αs/π)GG〉. Being a physical quantity we should use theL = ∞ extrapolated
values of the perturbative coefficients. On the other hand it could be useful to get numbers for the
"gluon condensate" at finiteL also: they provide some numerical insight how the infinite volume
limit is approached.

We use the relation between the plaquette measured in Monte Carlo simulationsPMC and its
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perturbative analogueP:

PMC = P+a4 π2

36

(

b0g2

β (g)

)

〈
αs

π
GG〉 , (4.1)

which defines the gluon condensate. In (4.1)β (g) denotes the standardβ -function withb0 being
its leading coefficient. From (4.1) it is obvious that the precision of the difference∆P = P−PMC

determines the reliability of an estimate for〈αs
π GG〉.

It has been proposed [10] to extract the gluon condensate taking into account a perturbative
series of the plaquette summed to an ordern⋆ (Pn⋆) from the following ansatz

a4 π2

36

(

−b0g2

β (g)

)

〈
αs

π
GG〉 = ∆Pn⋆ = Pn⋆ −PMC , (4.2)

where∆Pn⋆ contains possiblea2 anda4 contributions

∆Pn⋆ = c2(n
⋆)a2 +c4(n

⋆)a4 . (4.3)

The authors in [10] argued that non-zero values of the coefficientc2(n⋆) are an artefact due to a
truncation of the series: above some value ofn⋆ this coefficient should vanish. Our perturbative
series for both, the naive series (finiteL) and boosted series (L = ∞) confirm their hypothesis: for
boosted perturbation theory thea2-term decreases rapidly to zero forn⋆ > 10 (see left of Fig. 5);
for naive perturbation theory and finiteL one has to sum the series to much largern⋆.
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Figure 5: Left: Comparison ofc4(n⋆) and c2(n⋆) for naive and boosted (b) perturbation theory in the
extrapolated limitL = ∞. Right: ∆P/(a/r0)

2 as function of(a/r0)
2 for boosted perturbation theory. The

line is a linear fit ina2 for the range 0.02≤ (a/r0)
2 ≤ 0.08, r0 denotes the Sommer scale.

From the results obtained so far we conclude that the most reliable estimate forthe gluon
condensate can be obtained for the Wilson action using boosted perturbation theory. In the right
of Figure 5 we show∆P/(a/r0)

2 as function of(a/r0)
2 using boosted perturbation theory with

n⋆ = 20 and our own non-perturbative plaquette measurements at differentβ values and lattice
sizes forr0/a≥ 2.5. We clearly recognize a dominant lineara2 behavior. The necessary conversion
β ↔ (a/r0) is accomplished for the plaquette action by the Necco-Sommer relation [15].

In Table 1 we give numbers for the quantity〈(αs/π)GG〉 for finite L and boosted perturbation
theory atL = ∞. For the perturbative values at finiteL we use the hypergeometric model as given

6



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
2
6
4

Very high order lattice perturbation theory for Wilson loops H. Perlt

in (3.3). The table shows that the boosted result for extrapolationL = ∞ agrees within errors with
the model value at finite lattice sizeL = 12. The given errors have been estimated by varying the
fit window βmin ≤ β ≤ βmax. Our reference value for the gluon condensate is that forL = ∞ and

L r4
0 〈

αs
π GG〉 〈αs

π GG〉 [GeV4] fit range

6 1.08(10) 0.034(3) 5.73≤ β ≤ 6.00
8 1.22(11) 0.039(4) 5.78≤ β ≤ 6.10
12 1.29(17) 0.041(6) 5.78≤ β ≤ 6.27

∞, boosted 1.33(7) 0.042(2) 5.78≤ β ≤ 6.17

Table 1: Gluon condensate at finiteL for Wilson gauge action (r0 = 0.467 fm). The last column shows the
usedβ -fit range.

boosted perturbation theory given in Table 1. With the chosenr0 it is larger than the value obtained
by sum rule calculations [1].
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