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Introduction

Yang-Mills theories wave functional studies in Coulomb gauge have enjoyed a renewed inter-
est in the last years [1, 2, 3, 4, 5], since they bypass an explicit construction of the physical Hilbert
space [6]. The Gribov-Zwanziger confinement scenario plays a key role in this context [7, 8] and
its predictions for the static two pint functions need therefore to be explicitly verified. We re-
port here on our lattice calculation program regarding static gluon and ghost, the relation between
Coulomb and Landau gauge and the gluon strong coupling limit. We also show preliminary results
for the quark propagator in Coulomb gauge, which should relate the Gribov-Zwanziger mechanism
to chiral symmetry breaking.

1. Gluon propagator

As shown in [9, 10], after taking care of subtle renormalization issues related to the energy
dependence, the SU(2) static gluon propagator in Coulomb gauge D(|~p|) agrees within numerical
precision with Gribov’s formula [7], with an IR mass M = 0.856(8)GeV and vanishing anomalous
dimension in the UV. In [11] the relation between Coulomb and Landau gauge gluon propagators
was futher investigated. It was shown that both in 3 and 4 dimensions the two propagators coincide,
up to a simple rescaling ρ(p) of the momentum variable, shown in Fig. 1. The rescaling function
in 3 dimensions is a simple interpolation between two constants, since both propagators have no
anomalous dimension. In 4 dimensions only the Landau propagator has an anomalous dimension;
the function ρ behaves accordingly. When redrawn as a function of pρ(p), as shown in Fig. 2, the
Landau gluon propagator DL(p) coincides with the equivalent Coulomb one, DC(~p) = |~p|−1D(|~p|);
both show a massive IR behavior. Whether dimension 2 condensates [12, 13] could be related to
such IR mass is still an open question.
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Figure 1: Momentum rescaling function between Coulomb and Landau gauge propagators.
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Figure 2: Landau and Coulomb gluon propagator vs. equivalent momenta in 3 (left) end 4 dim. (right).

2. Strong coupling limit

The massive IR behavior in Landau gauge, found in all standard lattice calculations [14, 15],
is in disagreement with the Kugo-Ojima picture [16]. Some authors [17, 18] have supposed that
discretization and/or Gribov copies effects might be responsible for the discrepancies; strong cou-
pling calculations have been put forward as evidence. However going away from the continuum
limit one goes through bulk transitions [19] and unphysical effects should be expected, so that pre-
dictions arising from β = 0 results should be taken with extreme care. As an example, we show
the temporal gluon propagator in Coulomb gauge D0(|~p|), which should be equivalent to the static
potential [8]. Even without going to anisotropic lattices [20], which take care of scaling violations
[9, 10, 21], its diverging behavior, as expected for a confining theory, has been long established
in the continuum limit. In Fig. 3 D0(|~p|) is given in lattice units; the physical behavior seems to
be completely lost at strong coupling. The only way out would be to accept that the lattice scale
diverges in the β → 0 limit. All data would then collapse to a single point at (0,∞) when expressed
in physical units. The physical information contained in such result is of course minimal.
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Figure 3: Coulomb gauge temporal gluon propagator D0(|~p|) in the strong coupling limit.
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3. Ghost form factor

Functional methods [3, 4] provide sum rules which must be satisfied by the static gluon
propagator and ghost form factor IR exponents κgl + 2κgh = 1 and UV anomalous dimensions,
γgl +2γgh = 1, and give precise predictions for their value, κgl =−1, κgh = 1, γgl = 0 and γgh = 1/2.
For the static gluon propagator these have been already verified [9, 10, 11]. Extending previous
SU(2) calculations [22], new preliminary results for the ghost form factor d(|~p|) on a 324 lattice,
shown in Fig. 4, seem to confirm such prediction. Indeed, we find that the data are very well fitted
in the whole momentum range by:

d(|~p|) ∝

√
m2

~p2 + log−1(e+
~p2

m2 ) , (3.1)

with m = 0.32(2)GeV and χ2/d.o.f. = 0.8. Calculations on larger lattices are however necessary
and under way to confirm this result [23].
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Figure 4: Ghost form factor d(|~p|) on a 324 lattice.

4. Quark propagator

Although not directly related to the Gribov-Zwanziger confinement scenario, the quark propa-
gator in Coulomb gauge provides important physical information on chiral symmetry breaking and
dynamical mass generation. We report here preliminary results obtained in SU(3) for quenched
123× 24 lattices, using asqtad staggered fermions with a bare mass of mb ' 212 MeV. Results
using unquenched configurations and masses closer to the chiral limit will be published soon [24].
We have followed [25, 26, 27], adapting their method and notation from Landau to Coulomb gauge,
and explicitly calculated the inverse quark propagator for each configuration. Our first non-trivial
results is that the coefficients of the mixed term p/0~p/, which are in principle allowed in Coulomb
gauge beyond tree level, vanish within numerical precision. We find then that the most general
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form for the propagator and its inverse reads:

S(~p, p0) = −i p/0 At(~p, p0)− i~p/As(~p, p0)+Bm(~p, p0)

S−1(~p, p0) = i p/0 At(~p, p0)+ i~p/ As(~p, p0) + Bm(~p, p0) , (4.1)

where At , As and Bm can be easily re-expressed in terms of At , As and Bm, which are explicitly
obtained from the simulations. If renormalizable, one should expect:

S(~p, p0) = Z(~p, p0)
1

i~p/+ ip/0α(~p, p0)+M(~p, p0)

S−1(~p, p0) =
1

Z(~p, p0)
[i~p/+ ip/0α(~p, p0)+M(~p, p0)] (4.2)

and Z(~p, p0), α(~p, p0) and M(~p, p0) can be again expressed in terms of At , As and Bm; Z(~p, p0)
should be multiplicatively renormalizable while the functions α(~p, p0) and M(~p, p0) should be
cut-off independent. Fig. 5 shows the former for two different values of the coupling; it is clear
that the full quark propagator S(~p, p0) is not renormalizable. This seems to be a general pattern:
just like for the full Coulomb gauge gluon propagator [9, 10, 11], the p0 dependence needs to be
treated separately. Turning to the static quark propagator S−1(~p) =

∫
d p0S−1(~p, p0), being α an
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Figure 5: Temporal component α(~k,k0) of the quark propagator in Coulomb gauge.

even function of p0, the temporal component cancels for parity and we obtain:

S(~p) = Z(~p)
1

i~p/+M(~p)

S−1(~p) =
1

Z(~p)
[i~p/+M(~p)] , (4.3)

where:

M(~p) =
∫

d p0 Bm(~p, p0)∫
d p0 As(~p, p0)

=
∫

d p0 Bm(~p, p0)∫
d p0 As(~p, p0)

Z(~p) =
1∫

d p0 As(~p, p0)
=
[
~p2 +M2(~p)

]∫
d p0 As(~p, p0) . (4.4)
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Figure 6: Static quark self energy Z(~k) and running mass M(~k).

Z(~p) is then related to the quark self energy and should be multiplicative renormalizable, while
the running mass M(~p) should be renormalization group invariant. The two functions are shown
in Fig. 6, where Z(~p) has been rescaled for different β while the values for M(~p) have been di-
rectly taken from Eq. 4.4 without modifications; the light discrepancy is simply due to the different
renormalized current mass for different cutoffs given a fixed bare mass mb.

Conclusions and Outlook

We have reported on the progress in our program to determine two point functions in Coulomb
gauge. The static gluon propagator and ghost form factor confirm down to the available IR mo-
menta the Gribov-Zwanziger confinement scenario and the predictions from the hamiltonian func-
tional approach. We also show that, as for the gluon, only the static component of the quark
propagator is renormalizable. Extension to higher volumes and unquenched configurations are cur-
rently under investigation [23, 24]. We also comment on strong coupling limit results for the gluon
propagator. We show that, as expected, physical interpretations in this limit must be taken with
extreme care.
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