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We report on our studies of topological properties of classical spherical center vortices with the

low-lying eigenmodes of the Dirac operator in the fundamental and adjoint representations using

both the overlap and asqtad fermion formulations. We confirmthe discrepancy between the topo-

logical charge and the index of the Dirac operator, which wasalready found in a previous work

of our group [Phys. Rev. D 77, 14515 (2008)] for overlap fermions, also for staggered fermions

and adjoint representations. Furthermore, the index theorem of the adjoint fermions gives some

evidence for fractional topological charge. During cooling the spherical center vortex on a 403
×2

lattice we find an object with topological chargeQ= 1/2 which we identify as a Dirac monopole

without an antimonopole. For more details see[arXiv: hep-lat:1005.1015].
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1. Introduction

The center vortex model [1, 2, 3, 4, 5, 6] seems to be the most promising candidate to explain
quark confinement in non-abelian gauge theories. Center vortices, quantized magnetic flux lines,
compress the gluonic flux into tubes and cause a linearly rising potential at large separations. Nu-
merical simulations have indicated that vortices could also account for phenomena related to chiral
symmetry, such as causing topological charge fluctuations and spontaneous chiral symmetry break-
ing (SCSB) [7, 8, 9, 10]. These features of the QCD vacuum are intimately linked to the properties
of the low-lying spectrum of the Dirac operator. In Ref. [11]we found strong correlations between
the center vortices and the density distribution of low-lying Dirac eigenmodes.

The Atiyah-Singer index theorem [12, 13, 14, 15] states thatthe topological charge of a
gauge field configuration equals the index of the Dirac operator in this gauge field background.
In Ref. [16] we investigated the lattice index theorem and the localization of the zero modes for
thick classical center vortices. For non-orientable spherical vortices, the index of the overlap Dirac
operator turned out to differ from the topological charge.

Here we present our analysis of the topological charge and the lattice index theorem. We
work with thick spherical vortices in SU(2) lattice gauge theory and extend our overlap results to
(improved) staggered fermions in fundamental and adjoint representations. We also discuss the
role of adjoint fermions with respect to fractional topological charge.

2. Fundamental Dirac zero modes and Spherical Center Vortices

We construct the non-orientable spherical vortex as described in section IIIB in [16]. Only
the timelike links in one timeslice form a hedgehog-like configuration, resulting in one spherical
vortex sheet without any intersections and hence no topological charge. Since only links in the
time direction are different from1, the topological charge determined from any lattice version of
FF̃ vanishes for this spherical vortex configuration.

According to the Atiyah-Singer index theorem the topological charge is related to the index of
the Dirac operator by

ind D[A] = n−−n+ = Q (2.1)

wheren− andn+ are the number of left- and right-handed zero modes of the Dirac operator [12,
13, 14]. For the spherical vortex configuration, the index ofthe overlap Dirac operator [15, 17, 18]
is nonzero, even for lattice sizes fullfilling the Lüscher condition [19, 20, 21].

Staggered fermions [22, 23] don’t have exact zero modes, buta separation between “would-
be” zero modes and nonchiral modes is observed for improved staggered quark actions [24]. For
our non-orientable spherical vortex configurations this separation is large enough to clearly identify
the asqtad staggered zero modes. According to the index theorem, indD[A] = n−−n+ = 2Q, the
(doubly degenerate) zero modes give exactly the same topological charge as the overlap Dirac
operator. The number of zero modes for overlap and asqtad staggered fermions is presented in
Table 1. The scalar densities of the would-be zero modes for both types of spherical vortices show
a distribution (Fig. 1) that looks very similar to their overlap counterparts (see [16]).
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Figure 1: Scalar densities of the single (unpaired) asqtad staggeredzero mode of positive chirality for the
positive (α+, left) and negative chirality for the negative (α−, right) spherical vortex in a time slice of a
403

×8 lattice, with antiperiodic boundary conditions (see also[16], compare to Figs.6 and 4).

3. Adjoint fermions, index theorem and fractional topological charge

The advantages of probing the topological background of a gauge configuration with fermions
in the adjoint representation were discussed at recent lattice conferences (see e.g. [25]) and also
this year in the talk by Alfonso Sastre [26]. The index of the massless Dirac operator in the adjoint
representation of theSU(N) gauge group in a background field of topological chargeQ is equal to
2NQ [27]. Since the fermion is in the real representation, the spectrum of the adjoint Dirac operator
is doubly degenerate. Therefore, forSU(2) the index can only be a multiple of four if the gauge
field background is made up of classical instantons.

Classical instantons carry an integer topological charge.Thus, in case of a fermion in the fun-
damental representation ofSU(2) there is exactly one zero mode for a one-instanton configuration.
Now, if the actual constituents of the QCD vacuum had topological chargeQ= 1/2, no zero mode
would be produced. However, for adjoint fermions configurations with topological chargeQ= 1/2
are able to create a zero mode. Edwards et al. presented in [27] some evidence for fractional topo-
logical charge on the lattice. García-Pérez et al. [25], however, associated this to lattice artefacts,
i.e., topological objects of size of the order of the lattice spacing.

We test the lattice index theorem for overlap and asqtad staggered fermions in the adjoint color
representation on the spherical vortex configurations. In Table 1 the number of positive and negative
overlap and staggered zero modes in the fundamental and adjoint representation for periodic and
antiperiodic boundary conditions for spherical vortex configurations on different lattice sizes are
summarized. All investigated fermion representations equally violate the lattice index theorem for
these special configurations: the index is nonzero while thetopological charge vanishes.

The measurements with adjoint fermions also show fractional topological charge, see Table 1,
the cases where the adjoint index is not a multiple of four areprinted in bold. Very interesting is
the case of the cooled 403

×2 lattice configuration, which will be discussed next.
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fundamental: adjoint:
overlap: asqtad: overlap: asqtad:

lattice: pbc: apbc: pbc: apbc: pbc: apbc: pbc: apbc:
84: 3+ 4- 0+ 1- 6+ 8- 0+ 2- 4+6- 0+ 2- 8+ 12- 0+ 4-

124: 3+ 4- 0+ 1- 6+ 8- 0+ 2- 4+6- 0+ 2- 8+ 12- 0+ 4-
164: 3+ 4- 0+ 1- 6+ 8- 0+ 2- 4+ 8- 0+ 4- 8+ 16- 0+ 8-
204: 3+ 4- 0+ 1- 6+ 8- 0+ 2- 4+ 8- 0+ 4- 8+ 16- 0+ 8-

403x2: 3+ 4- 0+ 1- 6+ 8- 0+ 2- 4+ 8- 0+ 4- 8+ 16- 0+ 8-
cooled: 3+ 4- 0+ 1- 6+ 8- 0+ 2- 4+6- 0+ 2- 8+ 12- 0+ 4-
403x4: 3+ 4- 0+ 1- 6+ 8- 0+ 2- 4+ 8- 0+ 4- 8+ 16- 0+ 8-

Table 1: Number of positive and negative overlap and staggered zero modes in the fundamental and adjoint
representation for periodic and antiperiodic boundary conditions of spherical vortices on different lattice
sizes. Numbers which indicate half-integer topological charge are printed in bold.

4. Topological charge after cooling

During cooling the spherical vortex configuration the indexof the overlap Dirac operator does
not change, but the topological charge quickly changes to a nonzero value according to the index,
while the actionS reaches a (nonzero) plateau, as shown in Fig. 2a) for a 403

×4 lattice. So, the
index of the overlap Dirac operator agrees with the topological charge after some cooling, but not
on the original vortex configuration. During cooling of a spherical vortex on a 403×2 lattice we
find evidence for fractional topological charge as shown in Fig. 2b). It exhibits a second “plateau”
for the topological charge withQ≈ 1/2 between cooling steps 100 and 130. We analyzed this con-
figuration with adjoint eigenmodes, which indeed measure fractional topological charge, as seen
in Table 1. The spherical vortex contracts during cooling, after 78 cooling steps the vortex struc-
ture vanishes. In the maximal abelian gauge one can identifya monopole-antimonopole ring after
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Figure 2: Cooling of a spherical vortex: a) On a 403
×4 lattice, the topological charge rises from zero to

close to one (right scale) while the actionS (in units of the one-instanton actionSinst) reaches a plateau at
Sinst (left scale). b) 403× 2 lattice: While the actionS decreases slowly, the topological charge first rises
from zero to close to one, then decreases to an intermediate plateau ofQ≈ 0.4 before it vanishes.
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projection which again contracts during cooling and disappears after 91 cooling steps. We would
like to mention, that the position of the monopole ring on thevortex sphere depends on theU(1)
subgroup chosen for the projection, see Fig.3 in [16]. In theinteresting region with topological
chargeQ = 1/2 (at cooling step 120), the action and topological charge densities concentrate in
the center of the spacial volumes and the gauge field at the lattice boundary is trivial. Landau
gauge yields a very symmetric configuration, a static, singular non-abelian monopole without an
antimonopole. In Landau gauge both time slices are exactly the same and all time-like plaquettes
are trivial. The central cube in every time-slice is a non-abelian representation [28, 29] of a Dirac
monopole. Its six plaquettes correspond to rotations by 2π/3 in the fundamental representation of
SU(2). In the color frame of the corner with the smallest coordinate values the plaquette color vec-
tors, parallel-transported according to Fig. 2 in [30], point in the(−1,−1,−1)-direction. Hence,
the six plaquettes sum up to a total rotation of 4π in agreement with the non-abelian lattice Bianchi
identity, which states that the product of plaquette rotations in appropriate order results in the unit
matrix. Nevertheless the magnetic flux out of the cube is nonvanishing [30]. In theU(1) repre-
sentation in color direction(1,1,1) the central cube represents a Dirac monopole with plaquette
values summing up to 2π. The link variables of the central cube correspond to anSU(2) rotation
of a unit vector from one corner to the other,i.e., cos(ω) = 1/3 = (−1,−1,−1)(1,−1,−1)/3.
Due to the non-abelian nature of theSU(2) gauge field for increasing distance from the center
the field strength approaches zero. No antimonopole is needed to compensate the monopole. The
Polyakov loops around the central cube form a hedgehog. Theyreflect the color directions of the
link variables. A parallel-transport to the above color frame leads to parallel Polyakov lines in
color direction(−1,−1,−1). The SU(2) color directions (~n-vectors of cos(α)+ i sin(α)~n~σ ) of
link-, plaquette- and Polyakov matrices are depicted in Fig. 3.
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Figure 3: The arrows indicate the rotational vectors of link-, plaquette- and Polyakov-matrices around the
central cube of the cooled negative spherical vortex. Link-vectors rotate around the center, color fluxes
through plaquettes are aligned parallel in the(−1,−1,−1)-direction and Polyakov loops form a hedgehog.
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5. Conclusions & Outlook

We reported on violations of the lattice index theorem for smooth, “admissible” gauge configu-
rations of classical, spherical center vortices, for both,overlap and asqtad staggered fermions in the
fundamental and adjoint representations. Numerically, the discrepancy equals the winding number
of the spheres when they are regarded as mapsS3

→ SU(2). Obviously such windings, given by
the holonomy of the time-like loops of the spherical vortex,influence the index theorem [31, 32].
Cooling a spherical vortex on a 403

× 2 lattice, the index in the adjoint representation indicates
evidence for an object with fractional topological charge.This object withQ = 1/2 is identified
as a Dirac monopole with the wellknown singularity in its center and a gauge field fading away at
large distances. Therefore even for periodic boundary conditions it does not need an antimonopole.
For more details see[arXiv: hep-lat:1005.1015]. In a forthcoming paper we will analyze other
configurations with fractional topological charge.
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