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1. Introduction

The center vortex model [1, 2, 3, 4, 5, 6] seems to be the mostipmg candidate to explain
guark confinement in non-abelian gauge theories. Centéicesy quantized magnetic flux lines,
compress the gluonic flux into tubes and cause a linearlygigotential at large separations. Nu-
merical simulations have indicated that vortices could alscount for phenomena related to chiral
symmetry, such as causing topological charge fluctuatindspontaneous chiral symmetry break-
ing (SCSB) [7, 8, 9, 10]. These features of the QCD vacuumraimately linked to the properties
of the low-lying spectrum of the Dirac operator. In Ref. [idd found strong correlations between
the center vortices and the density distribution of lowxyDirac eigenmodes.

The Atiyah-Singer index theorem [12, 13, 14, 15] states thattopological charge of a
gauge field configuration equals the index of the Dirac operiat this gauge field background.
In Ref. [16] we investigated the lattice index theorem arel lttalization of the zero modes for
thick classical center vortices. For non-orientable siphévortices, the index of the overlap Dirac
operator turned out to differ from the topological charge.

Here we present our analysis of the topological charge aedattice index theorem. We
work with thick spherical vortices in SU(2) lattice gaugedhy and extend our overlap results to
(improved) staggered fermions in fundamental and adj@ptesentations. We also discuss the
role of adjoint fermions with respect to fractional topdlmj charge.

2. Fundamental Dirac zero modes and Spherical Center Vortices

We construct the non-orientable spherical vortex as daesgrin section llIB in [16]. Only
the timelike links in one timeslice form a hedgehog-like faiguration, resulting in one spherical
vortex sheet without any intersections and hence no topmalbgharge. Since only links in the
time direction are different froni, the topological charge determined from any lattice versib
FF vanishes for this spherical vortex configuration.

According to the Atiyah-Singer index theorem the topolagitharge is related to the index of
the Dirac operator by

iNndD[Aj]=n_—n. =Q (2.1)

wheren_ andn, are the number of left- and right-handed zero modes of thaddbperator [12,
13, 14]. For the spherical vortex configuration, the indethefoverlap Dirac operator [15, 17, 18]
is nonzero, even for lattice sizes fullfilling the Lischendiion [19, 20, 21].

Staggered fermions [22, 23] don't have exact zero modesa separation between “would-
be” zero modes and nonchiral modes is observed for improegmered quark actions [24]. For
our non-orientable spherical vortex configurations thzasation is large enough to clearly identify
the asqgtad staggered zero modes. According to the inderetinendD[A] = n_ — n, = 2Q, the
(doubly degenerate) zero modes give exactly the same fgipalocharge as the overlap Dirac
operator. The number of zero modes for overlap and asqtadested fermions is presented in
Table 1. The scalar densities of the would-be zero modesdibr lypes of spherical vortices show
a distribution (Fig. 1) that looks very similar to their olagy counterparts (see [16]).
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Figure 1: Scalar densities of the single (unpaired) asqtad staggemedmode of positive chirality for the
positive @, left) and negative chirality for the negativa_(, right) spherical vortex in a time slice of a
40° x 8 lattice, with antiperiodic boundary conditions (see 4], compare to Figs.6 and 4).

3. Adjoint fermions, index theorem and fractional topological charge

The advantages of probing the topological background ofiggaonfiguration with fermions
in the adjoint representation were discussed at receiddatbnferences (see e.g. [25]) and also
this year in the talk by Alfonso Sastre [26]. The index of thassiess Dirac operator in the adjoint
representation of th8U(N) gauge group in a background field of topological cha@ge equal to
2NQ[27]. Since the fermion is in the real representation, treegpm of the adjoint Dirac operator
is doubly degenerate. Therefore, J(2) the index can only be a multiple of four if the gauge
field background is made up of classical instantons.

Classical instantons carry an integer topological chafgels, in case of a fermion in the fun-
damental representation 8U(2) there is exactly one zero mode for a one-instanton configurat
Now, if the actual constituents of the QCD vacuum had topokigchargeQ = 1/2, no zero mode
would be produced. However, for adjoint fermions configorat with topological charg® = 1/2
are able to create a zero mode. Edwards et al. presented]isd2i& evidence for fractional topo-
logical charge on the lattice. Garcia-Pérez et al. [25],éva, associated this to lattice artefacts,
i.e., topological objects of size of the order of the lattice spgci

We test the lattice index theorem for overlap and asqtadystad fermions in the adjoint color
representation on the spherical vortex configurationsabi€'l the number of positive and negative
overlap and staggered zero modes in the fundamental anthtadjpresentation for periodic and
antiperiodic boundary conditions for spherical vortex figqurations on different lattice sizes are
summarized. All investigated fermion representationsaigwiolate the lattice index theorem for
these special configurations: the index is nonzero whilédpelogical charge vanishes.

The measurements with adjoint fermions also show fractimmelogical charge, see Table 1,
the cases where the adjoint index is not a multiple of fourpairted in bold. Very interesting is
the case of the cooled 3& 2 lattice configuration, which will be discussed next.
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fundamental: adjoint:
overlap: asqtad: overlap: asqtad:
lattice: pbc: apbc: pbc: apbc: pbc: apbc:  pbc: apbc:
8% 3+4- 0+1- 6+8 0+2- 46 0+2- 8+12- 0+4
12 3+4- 0+1- 6+8- 0+2- 46 0+2- 8+12- 0+4
16* 3+4- 0+1- 6+8- 0+2- 4+8- 0+4- 8+16- 0+8-
20% 3+4- 0+1- 6+8 0+2- 4+8- 0+4- 8+16- O0+8-
40°x2: 3+4- 0+1- 6+8- 0+2- 4+8 0+4- 8+16- 0+8-
cooled: 3+4- 0+1- 6+8 0+2- 46- 0+2- 8+12- 0+4-
40%x4: 3+4- 0+1- 6+8- 0+2- 4+8 0+4- 8+16- 0+8-

Table 1: Number of positive and negative overlap and staggered zedemin the fundamental and adjoint
representation for periodic and antiperiodic boundaryditions of spherical vortices on different lattice
sizes. Numbers which indicate half-integer topologicarge are printed in bold.

4. Topological charge after cooling

During cooling the spherical vortex configuration the indéxhe overlap Dirac operator does
not change, but the topological charge quickly changes tnaero value according to the index,
while the actionSreaches a (nonzero) plateau, as shown in Fig. 2a) foP & 40lattice. So, the
index of the overlap Dirac operator agrees with the topalalgtharge after some cooling, but not
on the original vortex configuration. During cooling of a sphal vortex on a 4dx 2 lattice we
find evidence for fractional topological charge as shownign Eb). It exhibits a second “plateau”
for the topological charge wit ~ 1/2 between cooling steps 100 and 130. We analyzed this con-
figuration with adjoint eigenmodes, which indeed measuaetiional topological charge, as seen
in Table 1. The spherical vortex contracts during cooliftgras8 cooling steps the vortex struc-
ture vanishes. In the maximal abelian gauge one can idemtifpnopole-antimonopole ring after
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Figure 2: Cooling of a spherical vortex: a) On a%g 4 lattice, the topological charge rises from zero to
close to one (right scale) while the acti8r(in units of the one-instanton actids;) reaches a plateau at
Shst (left scale). b) 48 x 2 lattice: While the actior§ decreases slowly, the topological charge first rises
from zero to close to one, then decreases to an intermed#tap ofQ = 0.4 before it vanishes.
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projection which again contracts during cooling and disapp after 91 cooling steps. We would
like to mention, that the position of the monopole ring on thetex sphere depends on tbgl)
subgroup chosen for the projection, see Fig.3 in [16]. Inititeresting region with topological
chargeQ = 1/2 (at cooling step 120), the action and topological chargesities concentrate in
the center of the spacial volumes and the gauge field at ttieeldtoundary is trivial. Landau
gauge yields a very symmetric configuration, a static, dargouon-abelian monopole without an
antimonopole. In Landau gauge both time slices are exdutlysame and all time-like plaquettes
are trivial. The central cube in every time-slice is a noe@n representation [28, 29] of a Dirac
monopole. Its six plaquettes correspond to rotationsyB824n the fundamental representation of
SU(2). In the color frame of the corner with the smallest coordinatlues the plaquette color vec-
tors, parallel-transported according to Fig. 2 in [30],mon the (—1,—1, —1)-direction. Hence,
the six plaquettes sum up to a total rotation ofid agreement with the non-abelian lattice Bianchi
identity, which states that the product of plaquette rotegiin appropriate order results in the unit
matrix. Nevertheless the magnetic flux out of the cube is anishing [30]. In theJ (1) repre-
sentation in color directioril,1,1) the central cube represents a Dirac monopole with plaquette
values summing up to72 The link variables of the central cube correspond t&hi(2) rotation

of a unit vector from one corner to the othég., cofw) = 1/3=(-1,-1,-1)(1,-1,-1)/3.
Due to the non-abelian nature of t&&J(2) gauge field for increasing distance from the center
the field strength approaches zero. No antimonopole is dedeompensate the monopole. The
Polyakov loops around the central cube form a hedgehog. Tdfl®ct the color directions of the
link variables. A parallel-transport to the above colomialeads to parallel Polyakov lines in
color direction(—1,—1,—1). The SU(2) color directions if-vectors of co&a) + isin(a)nd) of
link-, plaquette- and Polyakov matrices are depicted in Big
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A

I
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|
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color—electrique flux through
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Figure 3: The arrows indicate the rotational vectors of link-, plagteand Polyakov-matrices around the
central cube of the cooled negative spherical vortex. hia&tors rotate around the center, color fluxes
through plaquettes are aligned parallel in thel, —1, —1)-direction and Polyakov loops form a hedgehog.
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5. Conclusions & Outlook

We reported on violations of the lattice index theorem foosth, “admissible” gauge configu-
rations of classical, spherical center vortices, for botlerlap and asqtad staggered fermions in the
fundamental and adjoint representations. Numericalbydikcrepancy equals the winding number
of the spheres when they are regarded as 8ps SU(2). Obviously such windings, given by
the holonomy of the time-like loops of the spherical vortefluence the index theorem [31, 32].
Cooling a spherical vortex on a & 2 lattice, the index in the adjoint representation indisate
evidence for an object with fractional topological chardéis object withQ = 1/2 is identified
as a Dirac monopole with the wellknown singularity in its m#rand a gauge field fading away at
large distances. Therefore even for periodic boundaryitiond it does not need an antimonopole.
For more details sefarXiv: hep-lat:1005.1015 In a forthcoming paper we will analyze other
configurations with fractional topological charge.
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