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Knowledge of the derivative of the topological susceptibility at zero momentum is important for
assessing the validity of the Witten-Veneziano formula for the η ′ mass, and likewise for the res-
olution of the EMC proton spin problem. We investigate the momentum dependence of the topo-
logical susceptibility and its derivative at zero momentum using overlap fermions in quenched
lattice QCD simulations. We expose the role of the low-lying Dirac eigenmodes for the topologi-
cal charge density, and find a negative value for the derivative. While the sign of the derivative is
consistent with the QCD sum rule for pure Yang-Mills theory, the absolute value is overestimated
if the contribution from higher eigenmodes is ignored.
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1. Introduction

The derivative at zero momentum of the topological susceptibility χ(k2) in momentum space,
χ ′(0), is important to control the validity of the Witten-Veneziano formula for the η ′ mass [1,
2]. The derivation of this formula presupposes that the momentum dependence of the topological
susceptibility χ(k2) is moderate from k2 = 0 to m2

η ′ , i.e. |χ ′m2
η ′ | ≪ χ . Moreover, the large-Nc limit

is implied. The derivative is also helpful to analyze the EMC proton spin problem [3] (see [4] for a
review). Therefore it is of great interest to investigate χ ′(0) starting from QCD.

Based on various kinds of QCD sum rules, the following estimates of χ ′(0) have been reported.
For pure gauge (Yang Mills) theory, χ ′(0)|YM =−(7±3 MeV)2 [5], and with account of dynamical
quarks,

√
χ ′(0) ≈ 23.2± 2.4 MeV [6], χ ′(0) = (2.3± 0.6)× 10−3 GeV2 [7],

√
χ ′(0) = 26.4±

4.1 MeV (χ ′ ≈ 0.7×10−3 GeV2) [8], and χ ′(0) ≈ 1.82×10−3 GeV2 [9].
On the other hand, there are few lattice QCD simulations, which resulted in the following

values. In quenched lattice theory, χ ′(0)|SU(2) =−(9.84±0.91 MeV)2 [10], χ ′(0)|SU(3) =−(13±
16 MeV)2 [11], and full lattice QCD with staggered fermions,

√
χ ′(0) = 19±4 MeV [12]. In these

simulations, the topological charge density has been defined using the (unimproved) field strength
tensor constructed in terms of plaquette variables, and the cooling method has been applied to
eliminate the ultraviolet (UV) noise. Here, one may notice that the sign of the χ ′(0) estimated by
the QCD sum rules is negative in pure Yang-Mills theory while it is positive in full QCD, and the
lattice results seem to support this tendency within numerical errors.

In this paper, we are going to use a different approach in order to further investigate the deriva-
tive of the topological susceptibility at zero momentum using lattice QCD simulations. We shall
use overlap fermions [13, 14] to define the topological charge density [15]. This approach is ex-
tremely useful to clarify the topological structure of the QCD vacuum, since it preserves exact
chiral symmetry on the lattice [16] and satisfies the index theorem [17]. In this approach, it is also
possible to expose the role of the low-lying Dirac eigenmodes for the topological structure of the
QCD vacuum [18].

2. Topological charge density and susceptibility from overlap fermions

In order to define the topological charge density q(x) on the lattice with the lattice spacing a,
we employ the massless overlap Dirac operator [13, 14] defined by

D =
ρ
a

(1+
X√
X†X

) , X = DW − ρ
a

, (2.1)

where DW is the Wilson-Dirac operator. We set ρ = 1.4, a value identified for the lattices in use as
an optimal choice. Details of our implementation are described in [18]. Overlap fermions possess
exact chiral symmetry on the lattice [16] and provide n−+n+ exact zero modes, Dψ±

n = 0, with n−
(n+) being the number of modes with negative (positive) chirality: γ5ψ−

n =−ψ−
n and γ5ψ+

n = +ψ+
n .

The index is given by Q = n−− n+ [17]. The non-zero modes with eigenvalue λ , Dψλ = λψλ ,
occur in complex conjugate pairs λ and λ ∗ and satisfy ∑x pλ5(x) = ∑x Tr ψ†

λ (x)γ5ψλ (x) = 0, where
Tr should be regarded as the sum over color and spinor indices.
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Then, the topological charge density q(x) is given by [15]

q(x) ≡−Tr
[
γ5(1−

a
2

D(x,x))
]

, (2.2)

which satisfies the index theorem with Q = ∑x q(x) ∈ Z. The contribution of the low-lying Dirac
eigenmodes to q(x) can be exposed by applying the eigenmode expansion [19, 20, 21],

q(x;λcut) = − ∑
|λ |≤λcut

(
1− λ

2

)
pλ5(x) , (2.3)

where the cut-off λcut implies a kind of UV filtering, and pλ5(x) = ψ†
λ (x)γ5ψλ (x) is the local

chirality of the mode corresponding to the eigenvalue λ . Note that the UV filtering maintains the
index theorem independently of the cut-off such that Q = ∑x q(x;λcut). This is because the index
is computed only from the zero modes. Actually, it is observed that all zero modes of a lattice
configuration occur with the same chirality. Truncating the expansion at λcut acts like an UV filter
by removing certain short distance fluctuations from the local density q(x).

In the continuum limit, the momentum dependent topological susceptibility is defined as

χ(k2) =
∫

d4x eikxCq(x) , (2.4)

where Cq(x) = 〈T (q(x)q(0))〉 is the two-point correlation function of the topological charge density
q(x). Eq. (2.4) can be expanded with respect to k2 and one obtains the expression of the derivative
of the topological susceptibility at zero momentum

χ ′(0) =
dχ(k2)

dk2

∣∣∣∣∣
k2=0

= −1
8

∫
d4x x2Cq(x) . (2.5)

The lattice version of Eqs. (2.4) and (2.5) reads

χ(k̂2) = ∑
x∈V

eikxCq(x) , (2.6)

χ ′(0) = −1
8 ∑

x∈V
x2Cq(x) , (2.7)

respectively, where

Cq(r) =
1
V ∑

x∈V
〈q(x+ r)q(x)〉 . (2.8)

As we consider the lattice volume V = L3T and impose periodic boundary conditions in all direc-
tions, the momentum is discrete as

k̂µ =
2
a

sin(
akµ

2
) , kµ = 2π(

n1

L
,
n2

L
,
n3

L
,
n4

T
) , (2.9)

with nµ being integer; (n1,n2,n3) runs from 0 to (L/a)−1 and n4 from 0 to (T/a)−1.
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Table 1: Details of the ensemble used in this study. The Lüscher-Weisz gauge action is used, β denotes the
inverse coupling squared, a the lattice spacing (determined from the pion decay constant), and V = L3T the
lattice volume. χ(0) is the topological susceptibility.

β a [fm] (L/a)3(T/a) (fm4) # of config. χ(0) [GeV4]
8.45 0.105 16332 (15.9) 267 8.2(7) ×10−4

8.45 0.105 12324 (5.0) 116 9.1(13)×10−4

8.10 0.142 12324 (16.9) 254 8.6(8) ×10−4

8.00 0.157 16332 (79.6) 444 9.1(6) ×10−4

3. Numerical results

We used several ensembles of zero-temperature quenched configurations generated by means
of the Lüscher-Weisz gauge action [22] (see Table 1). This action is suitable for topological studies
since dislocations are greatly suppressed.

We plot χ(k̂2) as measured at β = 8.45 on the 16332 lattice in Fig 1 (left), and as measured
at β = 8.10 on the 12324 lattice in Fig. 1 (right), for various cut-off values of the (imaginary part
of the) eigenvalue, λcut = 0.2 − 0.8 GeV. In these analyses, the eigenvalue λ of Eq.(2.1) is
always replaced by λimp = (1− aλ/2ρ)−1λ . These are the eigenvalues of the improved massless
overlap operator Dimp [22]. The improvement projects the eigenvalues of D stereographically onto
the imaginary axis. We find that the largest value of χ(k̂2) is at k̂2 = 0 for each cut-off value of
the eigenvalues λcut = 0.2 − 0.8 GeV and that the functions χ(k̂2) are monotonously decreasing
as functions of the momentum for all cut-off values. The qualitative behavior of χ(k̂2) does not
depend on the lattice spacing.

The result of the χ ′(0) according to Eq. (2.7) is plotted in Fig. 2. We do not see a significant
volume dependence at β = 8.45 for which two lattice volumes are available. Since the physical
volume of the 12324 lattice at β = 8.45 is the smallest among our lattice ensembles (see Table 1),
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Figure 1: The momentum dependence of the topological susceptibility at β = 8.45 on the 16332 lattice
(left). There are two data points at some momenta, which are due to the violation of rotational symmetry,
and are expected to converge to one point in the continuum limit. The same as the left figure, but at β = 8.10
on the 12324 lattice (right) .
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we expect that the finite volume effect will not spoil our observation. The physical scales of the
cut-off values at different β values are chosen approximately corresponding to each other, so as to
examine the lattice spacing dependence of χ ′(0). In the result we find a reasonable scaling behavior
of χ ′(0) at corresponding cut-off values λcut, apart from the data of the coarsest lattice at β = 8.00.

In any case, we find an interesting behavior: as the cut-off increases, |χ ′(0)| becomes smaller.
In other words, |χ ′(0)| takes on the largest values if only the lowest eigenmodes are included in the
fluctuations of the topological density. If one, considering the Witten-Veneziano formula, ignores
the necessary condition of |χ ′(0)m2

η ′ | ≪ χ(0), it seems that the topological susceptibility at zero
momentum χ(0) is the only important parameter for the η ′ mass. Since χ(0) depends only on the
(number and chirality of the ) zero modes, one might erroneously conclude that the zero modes are
sufficient to describe the topological structure of the QCD vacuum. However, the behavior of χ ′(0)
indicates that fluctuation of the topological charge density at all scales are necessary to warrant that
|χ ′(0)m2

η ′ | ≪ χ(0) can be satisfied.
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Figure 2: The slope χ ′(0) as a function of the cut-off
λcut.
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Figure 3: The same as in Fig. 1, but for the ensemble
with β = 8.10 on the 12324 lattice, when the zero modes
and the lowest eigenmodes are removed from the eval-
uation of χ(k̂2). Only eigenmodes between 0.4 ≤ λ ≤
0.8 GeV are taken into account.

For instance, taking a typical value at
β = 8.10, we have χ ′(0) ≈−0.001 GeV2

(χ ′(0)≈−(32 MeV)2) with χ(0)≈ 8.6×
10−4 GeV4, we estimate χ(0)/|χ ′(0)| ≈
0.86 GeV2 = (930 MeV)2, which is com-
parable with mη ′ = 958 MeV. This in
turn means that not only the lowest eigen-
modes (not to mention only the zero
modes) but also the higher eigenmodes
have to play an important role for the
topological structure of the QCD vacuum.

It is then quite intriguing to inves-
tigate which value the derivative χ ′(0)
approaches if more and more contribu-
tions from higher eigenmodes (possibly
all eigenmodes) are included. We in-
vestigate this for the case of β = 8.10
on the 12324 lattice based on the defini-
tion of the full topological charge density
in Eq. (2.2), which was evaluated with-
out mode expansion. We find the value
of the derivative χ ′(0) = −2.4(16) ×
10−3 GeV2. However, we note that the
number of configurations used in this
analysis is only 53 [18] and that the
topological susceptibility is overestimated
for this subsample as χ(0) = 1.3(3) ×
10−3 GeV4. The limited number of The
small number of configurations is dictated
by the high cost of evaluating Eq. (2.2) us-
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ing the overlap Dirac operator. Therefore, the value of χ ′(0) based on the all-scale topological
density (formally λcut → ∞ ) cannot be considered as conclusive.

Next we examine the role of the zero and lowest modes for χ(k̂2). In Fig. 3, we plot the
χ(k̂2) for the ensemble with β = 8.10 on the 12324 lattice, where only the eigenmodes between
0.4 ≤ λ ≤ 0.8 GeV are used to define the topological charge density, i.e., the zero modes and very
low-lying modes are removed. We find that the slope at k̂2 = 0 turns to be positive. χ(k̂2) increases
from zero at k̂2 = 0 (due to the subtraction of zero modes from the topological density) to a certain
maximum value (near to k̂2 ≈ 1 GeV2 ) and then decreases.

This leads us to the speculation that – if the zero modes are dynamically suppressed and the
relative weight of sectors with smaller |Q| will increase in the average – the sign of the derivative
χ ′(0) may change from negative to positive. This may be the case in full QCD in the chiral limit.

4. Summary

Using the overlap fermion formalism, we have investigated the momentum dependence of the
topological susceptibility and its slope at zero momentum, χ ′(0). Overlap fermions preserve exact
chiral symmetry on the lattice and possess exact zero modes, which allow us to unambiguously
compute the index Q of vacuum configurations. We have found that χ ′(0) depends on the number
of eigenmodes determining the resolution in the definition of the topological charge density. The
more the cut-off applied to the eigenvalues of the Dirac operator increases, the more the absolute
value of the slope |χ ′(0)| decreases. In other words, |χ ′(0)| with only the lowest-lying eigenmodes
included turns out too large to guarantee that the technical assumption underlying the Witten-
Veneziano formula is fulfilled. From this point of view, fluctuation of the topological charge density
at all scales, represented by higher eigenmodes, should also be taken into account. Therefore it is
not correct to argue that only zero modes and low-lying eigenmodes are relevant for the topological
structure of the QCD vacuum.

As demonstrated in [18], the topological charge density possesses global sign coherent struc-
tures, which get increasingly tangled as more and more eigenmodes are included, and the all-scale
topological charge density has a lower-dimensional, laminar structure, together with a lumpy struc-
ture inside the sign coherent regions. After all, it is found to possess a multifractal structure. This
complicated structure of the QCD vacuum is responsible for the behavior of χ ′(0).

The numerical calculations have been performed at NIC (Jülich) and HLRN (Berlin) as well as
at DESY (Zeuthen). We thank all institutes for support. This work was supported in part by Japan
Society for the Promotion of Science (JSPS) and German Research Foundation (DFG), Japan-
German Joint Research Project 2008-2009. Y.K. was partially supported by the Ministry of Edu-
cation, Science, Sports and Culture, Japan, Grant-in-Aid for Encouragement of Young Scientists
(B), No.20740149. M.K. was supported by Japan Society for the Promotion of Science (JSPS),
Grant-in-Aid for JSPS Fellows (20 ·40152).
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