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Gauge fixing is a useful tool to simplify calculations. It is also valuable to combine different

methods, in particular lattice and continuum methods. However, beyond perturbation theory the

Gribov-Singer ambiguity requires further gauge conditions for a well-defined gauge-fixing pre-

scription. Different additional conditions can, in principle, lead to different results for gauge-

dependent correlation functions, as will be discussed for the example of Landau gauge. Also the

relation of lattice and continuum gauge fixing beyond perturbation theory will be briefly outlined.
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1. Why gauge fixing?

Gauge fixing is essentially a choice of coordinates in the field configuration space, and thus
nothing else than choosing a suitable coordinate system forcalculations. In fact, to calculate ob-
servables, it is intrinsically not necessary to fix a gauge. However, as often, it is much more simpler
to select a useful coordinate system than not. Hence, almostall current calculations, from perturba-
tion theory to lattice calculations of the hadron spectrum,use at one time or another gauge-fixing.

One application of gauge fixing has been calculations beyondperturbation theory when com-
bining different methods. A particular useful example is the the combination of lattice and con-
tinuum functional methods [1]. In this case, the lattice calculations are providing gauge-fixed
correlation functions in the domain where they are rather reliable. Functional methods then extend
these calculations to regions where lattice calculations are not feasible, like finite density, the chiral
limit, disparate energy scales, and so on.

Furthermore, all non-perturbative methods require at somepoint systematically uncontrolled
approximations. For functional methods, these are truncations. For lattice calculations, these are
finite volume and discretization, for which no analytical tools are available, and it is necessary to
refer to extrapolations. Thus a comparison of different non-perturbative methods helps to control
these systematic errors, in particular when it comes to predictions for experiments. Comparing then
the simplest, and thus in a gauge theory gauge-dependent, correlation functions helps to establish
systematic coherence. However, gauge fixing becomes itselfa problem beyond perturbation theory.

2. Gauge fixing as a selection process

The original idea of a gauge theory is to trade a redundant setof coordinates for locality. As a
consequence, it is possible to describe, e. g., Yang-Mills theory using only local interactions1. The
price paid is that not every field configuration describes a different physical process. In continuum
gauge theories, there is an denumerable infinite degeneracyin terms of physical observables for the
local variables, the gauge fields: Each physical situation is represented by a continuous gauge orbit
of gauge-equivalent fields, i. e., field configurations whichcan be transformed into each other by a
gauge transformation. In the case of Yang-Mills theory

L = −

1
4

Fa
µνFµν

a

Fa
µν = ∂µAa

ν −∂νAa
µ +g fa

bcA
b
µAc

ν

an infinitesimal move along this gauge orbit is given by

Aa
µ → Aa

µ +Dab
µ φb

Dab
µ = δ ab∂µ +g fab

c Ac
µ .

with Aa
µ the gauge fields,g the gauge coupling,f abc the structure constants of the associated gauge

algebra, and theφa are arbitrary functions.

1It is in principle possible to go back to a formulation without redundant coordinates, like in the loop-formalism of
lattice gauge theory. However, the variables and interactions then become inherently non-local.
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When performing a path integral quantization, the problem is how to ensure that each gauge
orbit is counted the same number of times. This can be ensuredby either of two ways [2]. One
way is that an average over all possible representatives of the gauge orbit is performed, which is
the basic idea of gauges like the Feynman gauge. The second possibility is to select a uniquely
characterized representative for each gauge orbit. This isdone, e. g., in Landau gauge, which
chooses perturbatively the one representative which satisfies

∂ µAa
µ = 0 (2.1)

These prescriptions can be implemented in a path integral byinserting an appropriate weight func-
tion or aδ -function, respectively [2]. In the continuum, such prescriptions are usually not evaluated
as a selection procedure on Gribov copies, but are rewrittenwith the help of auxiliary fields, the
ghost fields. Lattice calculations, on the other hand, have the advantage to be able to really select
gauge copies for the calculation of the path integral. Thus,in lattice calculations a literal imple-
mentation of a gauge condition is possible.

3. The Gribov-Singer ambiguity

The problem of gauge fixing beyond perturbation theory is that it becomes complicated to
specify gauge conditions [3]. The reason is that the gauge algebras of Yang-Mills theory are simple
Lie algebras [4]. As a consequence there is no single coordinate system which is able to cover the
whole field configuration space. Hence, it is not possible to give a local (and thus single coordinate
system) prescription to characterize the selection criterion for representatives of the gauge orbits.
This problem is known in the context of covariant gauges as the Gribov-Singer ambiguity, but it
occurs in one disguise or the other for all gauges studied so far, as long as a continuum formulation
is desired. In case of the Landau gauge this problem boils down to the fact that beyond perturbation
theory there is more than one solution to the equation (2.1),and it is not possible to impose purely
local constraints to single out one and only one representative for each gauge orbit.

However, it should be remarked that there is no conceptual difference between Gribov copies,
i. e. the multiple solutions of (2.1), and ordinary gauge copies. All of them are just regular repre-
sentatives of a gauge orbit. The only difference is that two Gribov copies are not infinitesimally
close to each other, as otherwise a local distinction would be possible. They are therefore separated
by non-infinitesimal gauge transformations. Still, they are just ordinary gauge copies, and their
removal is in no way different from the removal of other gaugecopies. It is just that because of the
geometrical structure of the gauge orbits it is not possibleto do so by local conditions.

It is of course possible, instead of trying to specify with non-local gauge condition such a
single representative, to just enlarge the averaging procedure of perturbation theory such as to
encompass also the Gribov copies. This case has additional challenges, known as the Neuberger
problem [5]. However, these can be overcome [6], and such gauges can indeed be constructed.

Irrespective of which possibility is chosen there is no reason to suspect a-priori that there exists
a unique way of how to extend the selection process. To discuss this in more detail, the setting will
be simplified by first reduce the gauge orbits to Landau gauge i. e., all remaining representatives of
the gauge orbit, the residual gauge orbit [7], fulfill (2.1).
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4. The example of Landau gauge(s)

The residual gauge orbits can then be partitioned in Gribov regions [3], which give the orbit
space a shell-structure, with the shell surrounding the origin also including perturbation theory. It
can then be shown that each shell contains at least one representative of each gauge orbit, but that
there exists also for at least some gauge orbits multiple representatives in each shell [8]. Thus, each
shell contains all physical information. The shells are called Gribov regions, their boundaries are
called Gribov horizons.

Among all possibilities how to treat the residual gauge orbits, two have received most attention.

One averages over all Gribov regions [5]. This constructioncan be shown to harbor a full
non-perturbatively well-defined version of BRST symmetry [5, 6], which has the same algebraic
structure as the perturbative one. However, in any calculation this requires to take into account the
signed measure of each Gribov copy, which so far cannot be turned into a simple expression.

The second one reduces the residual gauge orbit to the innermost Gribov region. It then re-
mains to specify further how to deal with the remaining representatives. Three different, equally
valid, choices have been especially pursued in lattice gauge theory recently:

• Minimal Landau gauge [7, 9, 10]. In this case for each orbit a random representative is
chosen among the possible ones. Results indicate that for correlation functions this may be
equivalent to average over all representatives of each residual gauge orbit.

• Absolute Landau gauge [7, 8, 11]. In this case the representative is selected which minimizes
a certain non-local functional (the integral of the trace ofthe gluon propagator [7]) absolutely,
though this has still a minor problem with topological identifications of certain gauge copies.
It has been conjectured that for correlation functions madefrom a finite polynominal of the
gauge fields this should yield the same correlation functionas the minimal Landau gauge [8],
which is supported by available results [11].

• Landau-B gauges [10]. In this case a representative is chosen in whicha certain non-local
quantity (the ghost propagator at zero momentum) is agreeing best with a predefined value
(called B). These gauges have shown the largest variability of correlation functions yet,
though they tend to agree for finite polynomials of the fields also with the minimal Landau
gauge.

All of them provide a well-defined prescription how to selecta representative. The minimal Landau
gauge depends of course on how well the random choice is implemented such that all representa-
tives are equally sampled. Though common algorithms seem toperform rather well [10], there is
no proof. Fixing the absolute Landau gauge is an NP-hard problem of spin-glass type, and there-
fore no guarantee exists whether any existing algorithm attempting to fix to this gauge actually
does this, though the results seem to support it [7, 11]. Finally, the Landau-B gauge has not been
shown to be able to differentiate between Gribov copies perfectly, i. e. that each Gribov copy has a
differentB value. However, it just averages in the sense of minimal Landau gauge over remaining
copies [10], which finally makes up for a well-defined prescription in the same sense as minimal
Landau gauge.
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5. Scaling anddecoupling or why there could be place for more than one solution

To put these constructions into perspective, it is necessary to make a short detour.

It is a remarkable fact that both the Dyson-Schwinger equations (DSEs) and the functional
renormalization group equations (FRGs) are form-equivalent, irrespective of whether they are for-
mulated within a single Gribov region or not [12]. Therefore, the solution manifold of these equa-
tions has to contain not only the solution inside the first Gribov region, but also in every other
Gribov region, and in the whole of the system without specifying the Gribov region. It is fur-
thermore quite important that the equations are not closingon themselves alone, but at least one
external specification has to be introduced, e. g., the ghostdressing function at zero momentum, at
least for the truncations where this has been investigated so far [1, 13]. It is furthermore intriguing
that the situation in Coulomb gauge is quite similar [14].

Using this one parameter, and imposing furthermore that theghost dressing function should
be positive (semi-)definite, an one-parameter family of solutions for these equations are found
[1, 13]. One of the end-points of the permitted interval is special, as it corresponds to a qualitatively
different kind of solution, the so-called scaling solution, which is characterized by critical behavior
in the infrared [1]. The remaining solutions are characterized by a screening behavior, and therefore
the degrees of freedom largely decouple, except for the photon-like ghost.

The natural questions arising are: Assuming that the existence of these solutions is not a pure
truncation artifact, to which of the Gribov regions do they belong? And is it possible to reproduce
them on the lattice? At least for one of the decoupling-type solutions the latter question can be
answered by yes. It is found equally well in one particular Landau-B gauge [10] and in the minimal
Landau gauge [1, 15, 16]. Also, the absolute Landau gauge appears to show a decoupling behavior
[11], in contrast to the original expectations [7, 8]. However, it is not yet clear, whether it produces
the same decoupling solution in the infinite volume and continuum limit [7].

The interesting question is: Can the other ones be reproduced on the lattice? Given the current
algorithms, the necessary precondition for a positive answer is, whether they belong to the first
Gribov region. Since outside the first Gribov region, the Faddeev-Popov operator acquires more
and more negative eigenvalues, it appears unlikely that theghost propagator can maintain a single
sign. In 1+1-dimensional Coulomb gauge there is actually a proof that the ghost dressing function
is only positive inside the first Gribov region [17]. This motivates that the whole family of solutions
could be obtainable inside the first Gribov region, and thus with current gauge-fixing algorithms.

However, if they are there, then they have necessarily to correspond trivially to a different
selection of Gribov copies than the minimal Landau gauge, because they are different. Thus, if
they can be found, this implies that they are the solutions obtained in different non-perturbative
realizations of the Landau gauge. At the current time, such aone-parameter-family is found using
Landau-B gauges, but this is only obtained for rather small lattices and coarse discretizations [10].
To study this further is mandatory, given the experience with the minimal Landau gauge [1, 15, 16].
But it also motivates that the family could be contained in the first Gribov region.

A particular case is the scaling version. Particular for a single reason: In favor of its existence
in the continuum case it has been embedded [1] in the construction of Kugo and Ojima [18], which
required the introduction of a global BRST. As noted, this requires to average over all Gribov
regions. Since the functional equations contain the information from all Gribov regions, there is
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no contradiction. However, if this is correct, and only then, for the question concerning the lattice
realization with contemporary algorithms the problem arises if it is possible to select Gribov copies
inside the first Gribov region such that they become equivalent to this average over all Gribov
regions. Or, put it in another way, cancel the contribution of all other Gribov regions? If the answer
is no, there is no possibility with current gauge-fixing algorithms to verify, or falsify, the existence
of the scaling solution with lattice methods under the assumption that the embedding is correct.
Otherwise, the same applies to scaling as applied to decoupling.

However, there are number of arguments in favor of this possibility. One is the positivity of
the ghost dressing function, in particular in view of the 1+1-Coulomb case. The second is that
scaling appears to be realized for all volumes studied so farin two dimensions [15, 19]. Since the
Kugo-Ojima/BRST construction is the same in two dimensions, at least there such a cancellation
appears possible. There is then no a-priori reason that thisshould not also be possible in higher
dimensions, and that it is not only obscured by the problem offinding the right Gribov copies. This
is also supported by the fact that in three dimensions over some momentum range scaling is seen,
before it finally turns decoupling [7, 15]. If this is a problem of finding the right Gribov copies, it
is clear that it becomes harder in three and even harder in four dimensions [10].

Unfortunately, this is by no means a guarantee that this can work out. Nonetheless, it is suffi-
cient motivation to investigate this possibility. Since the Landau-B gauges provide, by construction
[10], the most divergent ghost propagator, required for thescaling case, they are the ideal tool for
this search. And while available results increase the motivation [10], only further investigations
will be able to make something close to a statement. Unfortunately, numerical lattice simulations
are never able to verify or falsify such a question like the existence of a solution. Already the expe-
rience from solid-state physics teach us that there can always something unexpected happen with
the next order of magnitude of volume or discretization. Thus, the combination with continuum
and other methods to obtain a final answer is indispensable.

Thus, the question is therefore whether it is possible to impose Landau-B gauges also in the
continuum as a gauge condition. The formulation of the Landau-B gauges on the lattice suggest
that a property is imposed on the average, and in particular it is not needed to be exactly fulfilled
on every gauge orbit. Such constraints can be realized usingLagrange multiplier, suggesting as a
possible form for Landau-B gauges for an operatorO in the continuum the form

< O > = lim
ξ→0

∫

DAµDcD c̄O(Aµ ,c, c̄)θ
(

−∂µDab
µ

)

e−
∫

d4xLg exp

(

ZBB
V

∫

ddxddy∂ x
µ c̄a(x)∂ y

µ ca(y)

)

,

whereLg is the Faddeev-Popov Lagrangian, theθ -function implements the restriction to the first
Gribov region,V is the volume, the integral multiplyingB is the ghost dressing function at zero
momentum, andZB ensures the desired renormalization properties [10]. Thisis, of course, a non-
local object, which explicitly breaks perturbative BRST. This is purely a speculative proposal,
guided by the intuition of statistical mechanics. It shouldbe taken only as an incentive for a line
of thought in the future. But if such a realization of the Landau-B gauge is possible, this would
be a further step to connect the lattice and the continuum formulation, in particular also to finally
realize an understanding of what minimal Landau gauge is in the continuum, what is currently far
from obvious [1, 7, 10].
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6. Outlook

Gauge fixing is a useful tool to investigate many problems. Ithas already been quite useful
in perturbation theory, and it is so beyond perturbation theory. However, we have only just begun
to explore the possibilities of using the Gribov-Singer ambiguity to design gauges with desirable
properties, and the investigations in Landau gauge will provide us with deep insights into what is
the potential. In particular, it will provide us with an understanding to which extend we can deform
the properties of correlation functions by mere gauge choices. The discovery of multiple solutions
to the continuum equations, and the support of one of them by lattice methods, and algebraic
arguments in favor of another only motivates us to understand better what is the role of gauge-
fixing in this. But yet lacking analytic control, it is at the current time of significant importance to
pursue every possibility found to map out the implications of non-perturbative gauge fixing.
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