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Gauge fixing is a useful tool to simplify calculations. It i@ valuable to combine different

methods, in particular lattice and continuum methods. Henereyond perturbation theory the
Gribov-Singer ambiguity requires further gauge cond#idor a well-defined gauge-fixing pre-

scription. Different additional conditions can, in priptd, lead to different results for gauge-
dependent correlation functions, as will be discussedifereixample of Landau gauge. Also the
relation of lattice and continuum gauge fixing beyond pédxdtion theory will be briefly outlined.
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1. Why gauge fixing?

Gauge fixing is essentially a choice of coordinates in the fieinfiguration space, and thus
nothing else than choosing a suitable coordinate systermaloulations. In fact, to calculate ob-
servables, itis intrinsically not necessary to fix a gaugaweler, as often, itis much more simpler
to select a useful coordinate system than not. Hence, akti@strrent calculations, from perturba-
tion theory to lattice calculations of the hadron spectrusg at one time or another gauge-fixing.

One application of gauge fixing has been calculations bepentlirbation theory when com-
bining different methods. A particular useful example ie the combination of lattice and con-
tinuum functional methods [1]. In this case, the latticecakdtions are providing gauge-fixed
correlation functions in the domain where they are rathkgibke. Functional methods then extend
these calculations to regions where lattice calculatioasat feasible, like finite density, the chiral
limit, disparate energy scales, and so on.

Furthermore, all non-perturbative methods require at spamnet systematically uncontrolled
approximations. For functional methods, these are trimsit For lattice calculations, these are
finite volume and discretization, for which no analyticablare available, and it is necessary to
refer to extrapolations. Thus a comparison of different-perturbative methods helps to control
these systematic errors, in particular when it comes toigieds for experiments. Comparing then
the simplest, and thus in a gauge theory gauge-dependerglation functions helps to establish
systematic coherence. However, gauge fixing becomesdtgetfblem beyond perturbation theory.

2. Gauge fixing as a selection process

The original idea of a gauge theory is to trade a redundardfsstordinates for locality. As a
consequence, it is possible to describe, e. g., Yang-Mi#sty using only local interactiohsThe
price paid is that not every field configuration describedfamint physical process. In continuum
gauge theories, there is an denumerable infinite degeniréeyns of physical observables for the
local variables, the gauge fields: Each physical situasoepresented by a continuous gauge orbit
of gauge-equivalent fields, i. e., field configurations wtieh be transformed into each other by a
gauge transformation. In the case of Yang-Mills theory
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an infinitesimal move along this gauge orbit is given by
b
A‘Z — A‘:‘, + D‘:‘, O
D3 = 5%°9, + gf2°AS.

with A the gauge fieldgy the gauge couplingf2°¢ the structure constants of the associated gauge
algebra, and the? are arbitrary functions.

Litis in principle possible to go back to a formulation withiwedundant coordinates, like in the loop-formalism of
lattice gauge theory. However, the variables and intevastthen become inherently non-local.
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When performing a path integral quantization, the problerhaw to ensure that each gauge
orbit is counted the same number of times. This can be endwyreither of two ways [2]. One
way is that an average over all possible representativelseofauge orbit is performed, which is
the basic idea of gauges like the Feynman gauge. The secasibitity is to select a uniquely
characterized representative for each gauge orbit. Thi®me, e. g., in Landau gauge, which
chooses perturbatively the one representative whichfigatis

AR =0 (2.1)

These prescriptions can be implemented in a path integriaideyting an appropriate weight func-
tion or ad-function, respectively [2]. In the continuum, such prgsmns are usually not evaluated
as a selection procedure on Gribov copies, but are rewrnititnthe help of auxiliary fields, the
ghost fields. Lattice calculations, on the other hand, hgeativantage to be able to really select
gauge copies for the calculation of the path integral. Thugttice calculations a literal imple-
mentation of a gauge condition is possible.

3. The Gribov-Singer ambiguity

The problem of gauge fixing beyond perturbation theory i¢ thBecomes complicated to
specify gauge conditions [3]. The reason is that the gauggbeds of Yang-Mills theory are simple
Lie algebras [4]. As a consequence there is no single ccatelsystem which is able to cover the
whole field configuration space. Hence, it is not possiblave g local (and thus single coordinate
system) prescription to characterize the selection @uitefior representatives of the gauge orbits.
This problem is known in the context of covariant gauges as@hbov-Singer ambiguity, but it
occurs in one disguise or the other for all gauges studiedrsa$ long as a continuum formulation
is desired. In case of the Landau gauge this problem boilsdowhe fact that beyond perturbation
theory there is more than one solution to the equation (arig,it is not possible to impose purely
local constraints to single out one and only one represeetfir each gauge orbit.

However, it should be remarked that there is no conceptifareince between Gribov copies,
i. e. the multiple solutions of (2.1), and ordinary gaugeiespAll of them are just regular repre-
sentatives of a gauge orbit. The only difference is that twib@ copies are not infinitesimally
close to each other, as otherwise a local distinction woalddssible. They are therefore separated
by non-infinitesimal gauge transformations. Still, theg arst ordinary gauge copies, and their
removal is in no way different from the removal of other gaagpies. It is just that because of the
geometrical structure of the gauge orbits it is not posdibldo so by local conditions.

It is of course possible, instead of trying to specify witmrdocal gauge condition such a
single representative, to just enlarge the averaging proeeof perturbation theory such as to
encompass also the Gribov copies. This case has additibahérges, known as the Neuberger
problem [5]. However, these can be overcome [6], and suchegacan indeed be constructed.

Irrespective of which possibility is chosen there is ho oga® suspect a-priori that there exists
a unique way of how to extend the selection process. To dighisin more detail, the setting will
be simplified by first reduce the gauge orbits to Landau gaugieall remaining representatives of
the gauge orbit, the residual gauge orbit [7], fulfill (2.1).
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4. The example of Landau gauge(s)

The residual gauge orbits can then be partitioned in Grilegions [3], which give the orbit
space a shell-structure, with the shell surrounding thgiroalso including perturbation theory. It
can then be shown that each shell contains at least one eepatige of each gauge orbit, but that
there exists also for at least some gauge orbits multipleesemtatives in each shell [8]. Thus, each
shell contains all physical information. The shells ardech{Gribov regions, their boundaries are
called Gribov horizons.

Among all possibilities how to treat the residual gaugetsrtivo have received most attention.

One averages over all Gribov regions [5]. This constructian be shown to harbor a full
non-perturbatively well-defined version of BRST symmey 6], which has the same algebraic
structure as the perturbative one. However, in any calomldhis requires to take into account the
signed measure of each Gribov copy, which so far cannot bedunto a simple expression.

The second one reduces the residual gauge orbit to the inse@ribov region. It then re-
mains to specify further how to deal with the remaining repreatives. Three different, equally
valid, choices have been especially pursued in lattice g#tugpry recently:

e Minimal Landau gauge [7, 9, 10]. In this case for each orbiaadom representative is
chosen among the possible ones. Results indicate that fiaion functions this may be
equivalent to average over all representatives of eactiualsgauge orbit.

e Absolute Landau gauge [7, 8, 11]. In this case the reprethamnta selected which minimizes
a certain non-local functional (the integral of the tracéhefgluon propagator [7]) absolutely,
though this has still a minor problem with topological idéoations of certain gauge copies.
It has been conjectured that for correlation functions nfem® a finite polynominal of the
gauge fields this should yield the same correlation funa®the minimal Landau gauge [8],
which is supported by available results [11].

e LandauB gauges [10]. In this case a representative is chosen in veh@grtain non-local
guantity (the ghost propagator at zero momentum) is agydsist with a predefined value
(called B). These gauges have shown the largest variability of adfosl functions yet,
though they tend to agree for finite polynomials of the field® avith the minimal Landau
gauge.

All of them provide a well-defined prescription how to selacepresentative. The minimal Landau
gauge depends of course on how well the random choice is ingpled such that all representa-
tives are equally sampled. Though common algorithms seguarform rather well [10], there is
no proof. Fixing the absolute Landau gauge is an NP-hardigmobf spin-glass type, and there-
fore no guarantee exists whether any existing algorithmrmgiting to fix to this gauge actually
does this, though the results seem to support it [7, 11].llyithe LandauB gauge has not been
shown to be able to differentiate between Gribov copiesgodf, i. e. that each Gribov copy has a
different B value. However, it just averages in the sense of minimal harghuge over remaining
copies [10], which finally makes up for a well-defined prgstioin in the same sense as minimal
Landau gauge.
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5. Scaling anddecoupling or why there could be place for more than one solibn

To put these constructions into perspective, it is necggeanake a short detour.

It is a remarkable fact that both the Dyson-Schwinger equat{DSEs) and the functional
renormalization group equations (FRGs) are form-equntaierespective of whether they are for-
mulated within a single Gribov region or not [12]. Therefdiee solution manifold of these equa-
tions has to contain not only the solution inside the firstb@vi region, but also in every other
Gribov region, and in the whole of the system without speegythe Gribov region. It is fur-
thermore quite important that the equations are not closmghemselves alone, but at least one
external specification has to be introduced, e. g., the giressing function at zero momentum, at
least for the truncations where this has been investigatdargl, 13]. It is furthermore intriguing
that the situation in Coulomb gauge is quite similar [14].

Using this one parameter, and imposing furthermore thaghtiwest dressing function should
be positive (semi-)definite, an one-parameter family otisohs for these equations are found
[1, 13]. One of the end-points of the permitted interval is@gl, as it corresponds to a qualitatively
different kind of solution, the so-called scaling soluti@rhich is characterized by critical behavior
in the infrared [1]. The remaining solutions are charaztatiby a screening behavior, and therefore
the degrees of freedom largely decouple, except for theopHike ghost.

The natural questions arising are: Assuming that the exdstef these solutions is not a pure
truncation artifact, to which of the Gribov regions do theydng? And is it possible to reproduce
them on the lattice? At least for one of the decoupling-typleitions the latter question can be
answered by yes. Itis found equally well in one particulandzuB gauge [10] and in the minimal
Landau gauge [1, 15, 16]. Also, the absolute Landau gaugesappo show a decoupling behavior
[11], in contrast to the original expectations [7, 8]. Howe\t is not yet clear, whether it produces
the same decoupling solution in the infinite volume and contm limit [7].

The interesting question is: Can the other ones be reprddurtéhe lattice? Given the current
algorithms, the necessary precondition for a positive @nss; whether they belong to the first
Gribov region. Since outside the first Gribov region, the desV-Popov operator acquires more
and more negative eigenvalues, it appears unlikely thaghiost propagator can maintain a single
sign. In 1+1-dimensional Coulomb gauge there is actuallyoafithat the ghost dressing function
is only positive inside the first Gribov region [17]. This rivates that the whole family of solutions
could be obtainable inside the first Gribov region, and thitk @urrent gauge-fixing algorithms.

However, if they are there, then they have necessarily teespond trivially to a different
selection of Gribov copies than the minimal Landau gaugeabse they are different. Thus, if
they can be found, this implies that they are the solutiortaioned in different non-perturbative
realizations of the Landau gauge. At the current time, susheaparameter-family is found using
LandauB gauges, but this is only obtained for rather small lattiaes$ @arse discretizations [10].
To study this further is mandatory, given the experiencé trieé minimal Landau gauge [1, 15, 16].
But it also motivates that the family could be contained i filnst Gribov region.

A particular case is the scaling version. Particular fomgle reason: In favor of its existence
in the continuum case it has been embedded [1] in the cotistnuaf Kugo and Ojima [18], which
required the introduction of a global BRST. As noted, thiguiees to average over all Gribov
regions. Since the functional equations contain the in&tion from all Gribov regions, there is
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no contradiction. However, if this is correct, and only thfar the question concerning the lattice
realization with contemporary algorithms the problemesis it is possible to select Gribov copies
inside the first Gribov region such that they become equitatie this average over all Gribov

regions. Or, put it in another way, cancel the contributibalbother Gribov regions? If the answer
is no, there is no possibility with current gauge-fixing altons to verify, or falsify, the existence

of the scaling solution with lattice methods under the agstion that the embedding is correct.
Otherwise, the same applies to scaling as applied to deogupl

However, there are number of arguments in favor of this pdigi One is the positivity of
the ghost dressing function, in particular in view of the 43dulomb case. The second is that
scaling appears to be realized for all volumes studied simfavo dimensions [15, 19]. Since the
Kugo-Ojima/BRST construction is the same in two dimensi@tdeast there such a cancellation
appears possible. There is then no a-priori reason thasliuisld not also be possible in higher
dimensions, and that it is not only obscured by the problefinding the right Gribov copies. This
is also supported by the fact that in three dimensions oueesoomentum range scaling is seen,
before it finally turns decoupling [7, 15]. If this is a probieof finding the right Gribov copies, it
is clear that it becomes harder in three and even harder irdimensions [10].

Unfortunately, this is by ho means a guarantee that this acak aut. Nonetheless, it is suffi-
cient motivation to investigate this possibility. Since ttandauB gauges provide, by construction
[10], the most divergent ghost propagator, required forstteding case, they are the ideal tool for
this search. And while available results increase the rattia [10], only further investigations
will be able to make something close to a statement. Unfataly numerical lattice simulations
are never able to verify or falsify such a question like thistexce of a solution. Already the expe-
rience from solid-state physics teach us that there canyalsamething unexpected happen with
the next order of magnitude of volume or discretization. §;iHthe combination with continuum
and other methods to obtain a final answer is indispensable.

Thus, the question is therefore whether it is possible toosepLandalB gauges also in the
continuum as a gauge condition. The formulation of the LarBlgauges on the lattice suggest
that a property is imposed on the average, and in particulamiot needed to be exactly fulfilled
on every gauge orbit. Such constraints can be realized Wsiggange multiplier, suggesting as a
possible form for LandaB gauges for an operatar in the continuum the form

<O0>= éimo/@A“@c@c_ﬁ(Ap,c,ae (—0“Df,b) e/ d*% exp(%/ddxddydﬁéa(x)dﬁca(y)> ,

where.7j is the Faddeev-Popov Lagrangian, $iunction implements the restriction to the first
Gribov region,V is the volume, the integral multiplying is the ghost dressing function at zero
momentum, andg ensures the desired renormalization properties [10]. iBhisf course, a non-
local object, which explicitly breaks perturbative BRShig is purely a speculative proposal,
guided by the intuition of statistical mechanics. It shobtltaken only as an incentive for a line
of thought in the future. But if such a realization of the LandB gauge is possible, this would
be a further step to connect the lattice and the continuumdtation, in particular also to finally
realize an understanding of what minimal Landau gauge isdrcontinuum, what is currently far
from obvious [1, 7, 10].
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6. Outlook

Gauge fixing is a useful tool to investigate many problemsalf already been quite useful
in perturbation theory, and it is so beyond perturbatiorotiieHowever, we have only just begun
to explore the possibilities of using the Gribov-Singer &uliy to design gauges with desirable
properties, and the investigations in Landau gauge wiNideus with deep insights into what is
the potential. In particular, it will provide us with an undanding to which extend we can deform
the properties of correlation functions by mere gauge @mid@ he discovery of multiple solutions
to the continuum equations, and the support of one of thematiicd methods, and algebraic
arguments in favor of another only motivates us to undedstatter what is the role of gauge-
fixing in this. But yet lacking analytic control, it is at thermrent time of significant importance to
pursue every possibility found to map out the implicatiohaan-perturbative gauge fixing.
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