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We investigate how the infrared behavior of electric and magnetic gluon propagators in Landau

gauge is affected by temperature. More precisely, we perform large-lattice simulations in pure

SU(2) gauge theory around the transition temperatureTc and study the longitudinal (electric)

and transverse (magnetic) gluon propagators in momentum space, proposing the calculation of

screening masses through an Ansatz from the zero-temperature case. Going from zero to nonzero

temperature, we see that the longitudinal gluon propagatorDL(p) is enhanced, with an apparent

plateau value in the infrared, while the transverse propagator DT(p) gets progressively more

infrared-suppressed, with a clear turnover in momentum at all nonzero temperatures considered.

Our data allow us to associate what was previously seen as a peak in the infrared value ofDL(p)

at Tc to severe finite-size effects along the temperature direction. In particular, a temporal lattice

extentNt ≥ 8 seems to be needed to study the electric sector around the transition. Once these

systematic errors are eliminated, the infrared behavior ofthe longitudinal propagator appears to

be rather independent of the temperature below the transition. AboveTc, the infrared value of

DL(p) starts to decrease monotonically with the temperature.
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1. Introduction

At high temperatures, deconfinement is expected to be felt in the long-distance behavior of
correlation functions — such as the (real-space) longitudinal gluon propagator — as an exponential
falloff with the distance, defining a screening length and conversely a screening mass [1]. Although
this predicted behavior has been established at high temperatures down to around twice the critical
temperatureTc [2], it is not clear how a screening mass would show up aroundTc. At the same
time, recent studies of zero-temperature Landau-gauge propagators on large lattices have shown a
(dynamical) gluon mass atT = 0 (see e.g. [3] for a discussion), in agreement with the so-called
massive solution of Schwinger-Dyson equations [4]. One can try to use this knowledge to define
temperature-dependent masses for the region around the critical temperature. In the following, we
review briefly the lattice results for the zero-temperature case, discuss theexpected behavior for
nonzero temperature and show our preliminary results for the gluon propagator on large lattices for
several values of the temperature, drawing our conclusions. A more detailed analysis and additional
data will be presented elsewhere [5].

2. Expected Behavior

At zero temperature, Landau-gauge gluon and ghost propagators are expected to behave ac-
cording to the so-called Gribov-Zwanziger scenario, which is based on restricting the gauge con-
figurations to the region delimited by the first Gribov horizon, where the smallest nonzero eigen-
value of the Faddeev-Popov matrix goes to zero [6]. Essentially, the infinite-volume limit favors
configurations on the first Gribov horizon and, as a result, the ghost propagator should become
infrared-enhanced, inducing long-range effects in the theory. (In Coulomb gauge, the restriction to
the first Gribov region causes the appearance of a confining color-Coulomb potential.) In this sce-
nario, formulated for momentum-space propagators, the long-range features needed to explain the
color-confinement mechanism are thus manifest in the ghost propagator,whereas the momentum-
space gluon propagatorD(p) is suppressedin the infrared limit. Such a suppression is associated
with violation of spectral positivity, which is commonly regarded as an indicationof gluon con-
finement. In fact,D(0) is originally expected to be zero, corresponding to maximal violation of
spectral positivity. The parametrization of this behavior as a propagator with a pair of poles with
conjugate complex masses was proposed by Gribov, in connection with his study of gauge copies.

Lattice studies have confirmed the suppression of the gluon propagator in the infrared limit and
the enhancement of the ghost propagator at intermediate momenta. However, once the investigated
lattice sizes were large enough, it became clear that the standard procedure for gauge fixing and
simulations isnot compatible with the original scenario in the deep infrared regime. Indeed, the
gluon propagator attains a finite value as the momentum is taken to zero and the enhancement of the
ghost propagator does not persist in this limit. We note the very large lattice sizes employed in order
to observe such a behavior,L ≈ 20 fm and larger. The status of these zero-temperature simulations
has been recently reviewed in [7]. A good fit of the massive behavior for the gluon propagator is
obtained from the Gribov-Stingl form, which generalizes the Gribov form described above (see e.g.
[8]). In any case, violation of reflection positivity for the real-space gluon propagator is observed
for all cases studied [9].
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As the temperatureT is turned on, one expects to observe Debye screening of the color charge,
signaled by screening masses/lengths that can in principle be obtained fromthe gluon propagator
[10]. More specifically, chromoelectric (resp. chromomagnetic) screening will be related to the lon-
gitudinal (resp. transverse) gluon propagator computed at momenta with null temporal component,
i.e. with p0 = 0 (soft modes). At high temperatures, we expect the real-space longitudinal propa-
gator to fall off exponentially at long distances, defining a (real) electric screening mass, which can
be calculated perturbatively to leading order. Also, according to the 3d adjoint-Higgs picture for
dimensional reduction, we expect the transverse propagator to show a confining behavior at finite
temperature, in association with a nontrivial magnetic mass (see e.g. [2]). The ghost propagator,
on the other hand, should not depend onT. We note that these propagators are gauge-dependent
quantities, and the (perturbative) prediction that the propagator poles might be gauge-independent
must be checked, by considering different gauges.

The above expectations have been checked and confirmed for the gluonpropagator at high
T for various gauges [2, 11]. The behavior of Landau-gauge gluon and ghost propagators around
the critical temperatureTc has been investigated in [12]. The study showed a stronger infrared
suppression for the transverse propagator than for the longitudinal one, confirming the dimensional-
reduction picture also at smaller temperatures. [We note here that a very recent study [13] discusses
whether this suppression is consistent withDT(0) = 0 and investigates Gribov-copy effects for the
propagators.] It was also found that the ghost propagator is insensitive to the temperature, as
predicted. For the longitudinal gluon propagator, a very interesting behavior was seen: the data
approach a plateau (as a function of the momentum) in the infrared region and, as a function of
temperature, this plateau shows a sharp peak around the critical temperature. The exact behavior
aroundTc (e.g. whether the peak turns into a divergence at infinite volume) could notbe determined,
since relatively small lattices were used. All studies mentioned so far are forSU(2) gauge theory.
The momentum-space expressions for the transverse and longitudinal gluon propagatorsDT(p)
andDL(p) can be found e.g. in [12].

Recently, in [14], further simulations aroundTc confirmed the above results, and lattice data
for the gluon propagator were used to construct an order parameter for the chiral/deconfinement
transition. More precisely, the authors use a much finer resolution aroundTc and consider the
SU(2) and SU(3) cases. A check of their calculation is done for the electric screening mass, taken
as DL(0)−1/2 and extracted from the data, where only thep = 0 raw data point is used. The
considered lattice sizes are still moderate.

Of course, even if an exponential fit to the longitudinal gluon propagatorworks at high tem-
perature, it is not obvious that this should hold atT ∼> Tc. One should therefore consider more
general fits. AtT = 0, the momentum-space propagator is well fitted by a Gribov-Stingl form (see
e.g. [8]), allowing for complex-conjugate poles

DL,T(p) = C
1 + d p2η

(p2+a)2 + b2 . (2.1)

This expression corresponds to two poles, at massesm2 = a ± ib, wherem = mR + imI . The
massm thus depends only ona, b and not on the normalizationC. The parameterη should be 1
if the fitting form also describes the large momenta region (from our infrareddata we getη 6= 1).
For consistency with the usual definition of electric screening mass, we expect to observemI → 0
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(b→ 0) for the longitudinal gluon propagator at high temperature. Clearly, if thepropagator has the
above form, then the screening mass defined byDL(0)−1/2 =

√

(a2+b2)/C mixes the complex
and imaginary massesmR andmI and depends on the (a priori arbitrary) normalizationC.

3. Results

We have considered the pure SU(2) case, with a standard Wilson action. For our runs we
employ a cold start, performing a projection on positive Polyakov loop configurations. Also, gauge
fixing is done using stochastic overrelaxation and the gluon dressing functions are normalized to 1
at 2 GeV. We takeβ values in the scaling region and lattice sizes ranging fromNs = 48 to 192 and
from Nt = 2 to 16 lattice points, respectively along the spatial and along the temporal directions.
The temperature is given byT = 1/Nt a.

All our data have been fitted to a Gribov-Stingl behavior, as described in the previous section
(see Eq. 2.1). These fits are shown below in all plots, whereas a detailed discussion of the associated
massesmR, mI will be presented elsewhere [5]. We generally find good fits to the Gribov-Stingl
form (including the full range of momenta), with nonzero real and imaginary parts of the pole
masses in all cases. For the transverse propagatorDT(p), the massesmR andmI are of comparable
size. The same holds forDL(p), but in this case the relative size of the imaginary mass seems
to decrease with increasing temperature. We also looked at the real-spacepropagators, finding
clear violation of reflection positivity for the transverse propagator at alltemperatures. For the
longitudinal propagator, posivity violation is observed unequivocally only at zero temperature and
for a few cases around the critical region, in association with the severe systematic errors discussed
below.

Our runs were initially planned under the assumption that a temporal extentNt = 4 might be
sufficient to observe the infrared behavior of the propagators. (Ourgoal was, then, to increaseNs

significantly, to check for finite-size effects.) For this value ofNt , the chosenβ values: 2.2872,
2.299, 2.313, 2.333, 2.505796 yield temperatures respectively of 0.968,1.0, 1.04, 1.1, 1.936 times
the critical temperatureTc. As is clear from Fig. 1 below, the assumption thatNt = 4 might be
enough isnotverified for the longitudinal propagator around the critical temperature, especially in
the case of largerNs.

Indeed, asNs is doubled from 48 to 96 and then to 192, we see that the infrared value of
DL(p) changes drastically, resulting in a qualitatively different curve atNs = 192, apparently with
a turnover in momentum. Also, in this case the real-space longitudinal propagator manifestly
violates reflection positivity. We took this as an indication that our choice ofNt = 4 was not valid
and therefore considered larger values ofNt , obtaining a clearer picture of the critical behavior of
DL(p). As seen in Fig. 1 (top), once we use large enough values ofNt , the curve stabilizes (within
statistical errors) for four different combinations of parameters. In particular, the two curves at fixed
physical volume (the yellow and the gray curves) agree very nicely. Notealso that the (orange)
curve corresponding to the smallest physical spatial size (i.e. 4 fm), may show mild finite-size
effects. As seen in the bottom plot, the finite-physical-size effects are more pronounced for the
transverse propagator, which does not seem to suffer from the same small-Nt effects. In this case,
we see clearly the strong infrared suppression of the propagator, with aturnover at around 400
MeV.
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Figure 1: Longitudinal (top) and transverse (bottom) gluon propagator at Tc, for various lattice sizes and
values ofβ . Values forN3

s ×Nt , β , lattice spacinga and spatial lattice sizeL (both in fm, in parentheses)
are given in the plot labels. The resulting temperature is about 302 MeV.
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Figure 2: Longitudinal and transverse gluon propagators atT = 0 (left) andT = Tc/2 (right). Values for
N3

s ×Nt , β , lattice spacinga and spatial lattice sizeL (both in fm, in parentheses) are given in the plot labels.
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Figure 3: Longitudinal gluon propagator forT ≤ Tc (left) andT > Tc (right). Values forN3
s ×Nt , β , lattice

spacinga and spatial lattice sizeL (both in fm, in parentheses) are given in the plot labels.

The above systematic errors were not observed for other simulated values of the temperature
(except for the data at 0.968Tc, not shown here), including the temperature values just aboveTc.
We also did runs atT = 0 andT ≈ Tc/2, for which we show combinedDL(p) andDT(p) data in
Fig. 2. We see a jump inDL(p) as temperature is switched on, whileDT(p) decreases slightly,
showing a clear turnover point at around 350 MeV. In Fig. 3 we collect data forDL(p) at several
temperatures (forT ≤ Tc, for clarity, we show only valid lattices with the largest physical size).
Note that the curve remains unchanged (within errors) fromTc/2 toTc. AboveTc, there is a steady
drop. For all values ofT, DL(p) seems to reach a plateau at smallp.
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4. Conclusions

The transverse gluon propagatorDT(p) shows infrared suppression and a turnover in momen-
tum (in agreement with the dimensional-reduction picture) at all nonzero temperatures considered.
The longitudinal propagatorDL(p), on the contrary, appears to reach a plateau at small momenta.
The data forDL(p) are subject to severe finite-Nt effects atT ≈ Tc. As a result, only lattices with
Nt ≥ 8 seem to be free from systematic errors. After these errors are removed, we see an infrared
value about 50% smaller than before. This suggests that there is no jump in theinfrared value of
DL(p) asT → Tc from below and that the drop afterTc is significantly smaller than previously
observed. [We note that all previous studies ofDL(p) aroundTc have employedNt ≤ 4.] Therefore,
the qualitative behavior ofDL(p) around the transition has to be revised.

We have obtained good fits of our data to a Gribov-Stingl form, with comparable real and
imaginary parts of the pole masses, also in the longitudinal-propagator case.This is in contrast
with an electric screening mass defined by the expressionDL(0)−1/2, which moreover may contain
significant finite-size effects. In that respect, we plan to consider the upper and lower bounds for
D(0) introduced in [15], to investigate the infinite-volume limit of the gluon propagatorat nonzero
temperature.
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