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We examine the entanglement properties of the Yang-Mills theory by calculating α entanglement
entropy with α = 2 using a SU(3) quenched lattice gauge simulation both in the confinement
and the deconfinement phases. In the confinement phase, the derivative of the α entropy with
respect to the size l of the subregion, whose entanglement properties are interested in, scales as
1/l3, and a clear discontinuity cannot be found within our statistical errors. The α entropy in
the deconfinement phase saturates at large l. The saturation value is comparable with the thermal
entropy of the pure Yang-Mills theory, indicating that the α entropy obeys the volume law at large
l in the deconfinement phase.
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1. Introduction

Various quantum systems show entanglement properties and they receive much attention in
quantum information theory and condensed matter physics. Entanglement entropy is one of quan-
tities measuring quantum entanglement. A typical example of the entangled state in quantum me-
chanical systems is a two spin-1/2 system in spin singlet state, which is widely used to discuss the
EPR paradox, one of major topics in quantum physics. Entanglement entropy can be defined not
only in quantum mechanical systems but also in quantum field theories.

In quantum mechanical systems, fundamental degrees of freedom are particles and quantum
entanglement measures how much two or more particles are quantum mechanically correlated with
each others. In quantum field theories, we focus on quantum entanglement of two or more sibre-
gions. The entanglement entropy between two subregions, a subregion A of size l and its comple-
ment B, measures how the spatial subregion in a total system is entangled quantum mechanically
with its complement.

Quantum entanglement of ground states has been widely discussed in condensed matter physics
(for a review, see [1]). For example, the entanglement entropy in the Ising chain model shows a
divergent behavior at the critical point while it saturates in the non-critical regime. It means that
the entanglement entropy serves as an order parameter of quantum phase transitions. Therefore,
the entanglement entropy is a useful quantity to investigate phase structures of quantum systems.

The entanglement entropy of the pure Yang-Mills theory is particularly interesting. A schematic
picture of the pure Yang-Mills system is drawn in Fig. 1. The Yang-Mills theory is an asymptot-
ically free theory and the high energy phenomena in QCD can well be described by gluon and
quark degrees of freedom using the perturbation theory. At low energies, on the other hand, color
degrees of freedom are confined in hadrons and the Yang-Mills system is described by the colorless
hadrons. This may remind us of the deconfinement phase transition; the color degrees of freedom
are released above the critical temperature, and gluons (and quarks in QCD) play a major role as
effective degrees of freedom while those in the confinement phase are glueballs (or hadrons). Thus,
one might ask if there is a critical distance scale at which the effective degrees of freedom change
from colorful objects to colorless objects as the critical temperature of the deconfinement phase
transition.

Recently, gauge/gravity correspondence has been extensively studied and it provides a power-
ful tool to study non-perturbative infrared dynamics of confining gauge theories. Beginning with
the pioneering work by Ryu and Takayanagi [2], the holographic approach is applied to the calcu-
lation of the entanglement entropy (for a review on the holographic calculation, see [3]). In this
approach, the entanglement entropy of gauge theories is obtained by calculating geodesics (mini-
mal surface bending down to the bulk space) in the gravity side, similar to the calculation of the
Wilson loop in the holographic approach. The boundary of geodesics coincides the boundary of
partitioned subsystems in gauge theory side. The entanglement entropy has been studied for vari-
ous confining backgrounds [4, 5]. It has been argued that the entanglement entropy could exhibit a
non-analytic behavior with respect to the size l of the subregion; an O(N2

c ) solution dominates at
small l, and a l-independent O(1) solution dominates above some critical length l∗ (see Fig. 2). This
indicates that the effective degrees of freedom change from colorful objects to colorless objects,
and the critical length l∗ plays a role of the inverse of the critical temperature of the deconfinement
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Figure 1: Schematic picture of the pure Yang-
Mill system.
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Figure 2: A typical example of the holograhic
prediction showing the discontinuity of the en-
tanglement entropy SA.

phase transition.
The entanglement entropy in SU(2) lattice gauge theory has been studied by Velytsky [6] and

Bividovich and Polikarpov [7]. In Ref. [6], SU(N) lattice gauge theories are studied in Migdal-
Kadanoff approximation, and in Ref. [7], SU(2) lattice gauge theory is numerically investigated,
and there is an indication that the derivative of the entanglement entropy shows a discontinuous
change at some critical length scale l∗ and it vanishes at large l.

In this study, we investigate α entanglement entropy in SU(3) pure Yang-Mills theory using
lattice Monte Carlo simulations. Instead of directly calculating the entropy, we adopt numerical
technique to evaluate the entanglement entropy, which has also been used in [7] (originally pro-
posed in [8, 9] in order to calculate the pressure in the deconfined phase).

2. Entanglement entropy

� � �
�

�
�

Figure 3: The complementary regions
A and B separated by an imaginary
boundary at x = l.

Entanglement entropy of a pure state |Ψ〉 is defined
as follows. We divide the total system into subregion A
and its complement B (see Fig. 3). Let l be the size of
the system A in the x direction. The density matrix of the
system is ρ = |Ψ〉〈Ψ|. At zero temperature, the ground
state is a pure state and the von Neumann entropy of the
system is zero. The reduced density matrix obtained by
tracing out the degrees of freedom in the region B,

ρA = TrB ρ = TrB |Ψ〉〈Ψ|, (2.1)

describes the density matrix for an observer who can only
access to the subregion A. Although we start off with a

pure state with vanishing von Neumann entropy, the state corresponding to the reduced density
matrix is generally a mixed state. ρA contains the information on the quantum degrees of freedom
traced out. The entanglement entropy is defined as the von Neumann entropy of the reduced density
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matrix,
SA =−TrρA lnρA. (2.2)

Some properties of the entanglement entropy can be found in [10].

3. Replica method

B

AB
Z(l,α) =

Z = A

αβ

β

Figure 4: Schematic picture
for the system with α cuts
in x− t plane. In the region
A (B), the periodic boundary
condition is imposed with
the period αβ (β ).

In order to evaluate the entanglement entropy, we apply the
replica trick. The detail of the derivation is given in [11]. The point
is that the entanglement entropy defined in Eq. (2.2) can be repre-
sented in the form, SA =− limα→1 ∂/∂α lnTrA ρα

A . The trace of the
α-th power of the reduced density matrix ρA is given by the ratio of
the partition functions,

Trρ
α
A =

Z(l,α)

Zα
. (3.1)

Here Z(l,α) is the partition function of the system having special
topology, the α-sheeted Riemann surface, and Z = Z(α = 1). The
field variables in the region A is periodically identified with the inter-
val αβ (β = 1/T is the lattice size in the temporal direction) while
in the region B the periodic boundary condition is imposed with the
period β (see Fig. 4).

The entanglement entropy is then given by

SA(l) =− lim
α→1

∂

∂α
ln
(

Z(l,α)

Zα

)
. (3.2)

The derivative of SA(l) with respect to l, which is free of the ultraviolet divergence, can be expressed
as follows;

∂SA(l)
dl

=
∂

∂ l

[
− lim

α→1

∂

∂α
ln
(

Z(l,α)

Zα

)]
= lim

α→1

∂

∂ l
∂

∂α
F [l,α]. (3.3)

That is, in order to calculate ∂SA/∂ l, we evaluate the free energy of the system having α cuts as
is depicted in Fig. 4, take the derivative with respect to α and l, and then take the limit α → 1.
Thus, the evaluation of the entanglement entropy is reduced to the calculation the free energy of
the system with α cuts.

4. Lattice setup and observables
In the lattice simulations, the derivative in Eq. (3.3) is replaced by the finite difference, and we

estimate the derivative by

lim
α→1

∂

∂ l
∂

∂α
F [A,α]→ ∂

∂ l
lim
α→1

(F [l,α +1]−F [l,α])→ F [l +a,α = 2]−F [l,α = 2]
a

. (4.1)

We note that ∂F [l,α = 1]/∂ l drops out since F [l,α = 1] does not depend on l. The difference
of the free energies can be evaluated numerically by introducing an ‘interpolating action’ which
interpolates two actions corresponding to two free energies [8, 9], Sint = (1− γ)Sl[U ]+ γSl+a[U ].
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Sl and Sl+a represent the actions corresponding to F [l,α = 2] and F [l +a,α = 2] in Eq. (4.1). It is
easy to show that

F [l +a,α = 2]−F [l,α = 2] =−
∫ 1

0
dγ

∂

∂γ
lnZ(l,γ) =

∫ 1

0
dγ 〈Sl+a[U ]−Sl[U ]〉

γ
. (4.2)

Here 〈·〉γ refers to the Monte Carlo average with the interpolating action Sint. Therefore, the α = 2
entanglement entropy can be evaluated numerically by updating gauge configurations with the
interpolating action on the lattice with α = 2 cuts, calculating the action differences for various γ ,
and performing a numerical integration over γ . In order to evaluate the integral in Eq. (4.2), we
calculated the action differences from γ = 0 to 1 by the step 0.1, and employed the Simpson’s rule
to evaluate the integration numerically, which interpolates neighboring points by a quadratic curve.

We adopt the heat-bath Monte Carlo technique with the standard plaquette action to generate
lattice configurations. First 5000 sweeps are discarded for thermalization, and the measurement
has been done every 100 sweeps. The number of configurations for each β and lattice size is about
3000 to 8000. The statistical errors are estimated by the jackknife method.

5. Simulation results

5.1 α entanglement entropy at zero temperature

The derivative of SA(l) with respect to l in the confinement phase is plotted in Fig. 5. ∂SA(l)/∂ l
is normalized by the area of the common boundary of the two subregions, |∂A|. We observe that
data on 124 and 164 agree within statistical errors. This implies that the derivative of the α = 2
entanglement entropy is proportional to the area of the boundary, namely, entanglement entropy
obeys an area law at zero temperature.

In the small l region, the α = 2 entanglement entropy is expected to scale as 1/l2 from the
dimensional analysis. That is, ∂SA/∂ l behaves as 1/l3 at small l. This behavior is exactly what the
entanglement entropy in conformal field theory in (3+1)-dimensional spacetime shows. In order to
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Figure 5: (1/|∂A|)∂SA/∂ l in the confinement phase. The dashed curve is the fit of the data by the function
c/ld with the fitted values c = 0.149(48),d = 3.06(20). The right panel shows the zoom up of the left panel
to make near-zero region more visible.
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confirm this, we fitted data with the function ∂SA/∂ l = c(1/l)d , and we obtain c = 0.149(48),d =

3.06(20),χ2/nd f = 0.192. The fitted function is plotted in Fig. 5 by the dashed curve. Our result
does not show a clear sign of the discontinuity in ∂SA/∂ l. Since the derivative of SA rapidly
decreases, the signal-to-noise ratio becomes quite small at large l and it is very difficult to locate
the critical length of the entanglement entropy numerically, even if it exists. It can be safely stated
that our results exclude the possibility of the existence of the critical length at below 0.4 [fm].

5.2 α entanglement entropy below and above the critical temperature

The left panel of Fig. 6 shows the derivative of the α entanglement entropy below the critical
temperature. The fitted function at zero temperature, (1/|∂A|)∂SA/∂ l = 0.149/l3.06, is drawn by
the dashed curve. We observe that the data agree with the fitted function of the zero temperature re-
sult. This indicates that the α entanglement entropy does not show a clear temperature dependence
below the critical temperature.

The numerical result above the critical temperature is given in the right panel of Fig. 6. We see
that ∂SA/∂ l does not approach zero but saturates at large l. At zero temperature, the ground state is
a pure state and the von Neumann entropy is zero. By contrast, the ground state at finite temperature
is a mixed state and the von Neumann entropy (thermal entropy) takes a finite value. This means
that at finite temperature, the entanglement entropy measures not only the quantum mechanical
correlation between the two spatial subregions but also the thermal entropy of the subregion. Since
the thermal entropy of the SU(3) Yang-Mills theory rapidly increases in the vicinity of the critical
temperature, the saturation value of the entanglement entropy may be considered as the thermal
entropy of the subregion A. We note that the asymptotic behavior of (1/|∂A|)∂SA/∂ l implies that
the entanglement entropy obeys the volume law at large l above the critical temperature.

We fitted the data with the function a/l3 +b, and we obtain

a = 0.180(16), b = 14.1(8) (T/Tc ∼ 1.44)
a = 0.187(14), b = 61.8(15) (T/Tc ∼ 2.02).

(5.1)
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Figure 6: Left panel: (1/|∂A|)∂SA/∂ l below the critical temperature. The dashed curve is the fitted function
at zero temperature. Right panel: (1/|∂A|)∂SA/∂ l above the critical temperature. The dotted curves show
the fits of the data by the function c/l3 +d.
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We note that the coefficient of the 1/l3 term agrees with each other. In order to compare the
asymptotic value of ∂SA/∂ l to the thermal entropy, we estimated the thermal entropy at T/Tc ∼
1.44 and 2.02 by reading the values off the figure in Ref. [12]. A rough estimate gives

s = 17 (T/Tc ∼ 1.44)
s = 56 (T/Tc ∼ 2.02).

(5.2)

These are comparable with the asymptotic values of ∂SA/∂ l.

6. Summary and conclusion
We studied the α entanglement entropy of the Yang-Mills vacuum with α = 2 using lattice

Monte Carlo simulations. The entanglement entropy measures the quantum correlation between
spatial subregions. We find that at zero temperature the derivative of the α = 2 entropy with re-
spect to l is well fitted by the function c/ld with d=3.06(20). The exponent d is consistent with
that in the conformal field theory. A clear discontinuity in ∂SA/∂ l was not observed within the sta-
tistical errors, which is arguded in the models of the gauge/gravity correspondence. Furthermore,
we observe that the α entropy is almost temperature independent below the critical temperature.
Above the critical temperature, α = 2 entropy does not approach zero but saturates at large l. Since
the ground state of the finite temperature system is a mixed state, this implies that the entangle-
ment entropy measures not only the correlation between the spatial subregions but also the thermal
entropy of the subregion, which dominates at large l. Indeed, our fitted result of the asymptotic
values is comparable with the thermal entropy of the pure SU(3) Yang-Mills theory.
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