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We report results on the Coulomb-gauge ghost propagatathaencblor-Coulomb potential com-
puted in two lattice gauge-field ensembles: (1) configunstiderived from our recently proposed
Yang—Mills vacuum wave functional in21 dimensions, and (2) lattices generated by Monte
Carlo simulations of the three-dimensional Euclidean Jl¥&ice gauge theory with the Wilson
action. We observe remarkable agreement between the glopstgators in both ensembles, but
some differences in the potentials. Those originate fram canfigurations with very small val-
ues of the lowest eigenvalue of the Coulomb-gauge FaddepevPoperator. If the same cuts on
such exceptional configurations are applied in both ensesntiien the color-Coulomb potentials
are also in reasonably good agreement.
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1. Proposal for an approximate vacuum wave functional

Confinement is supposed to be encoded in properties of the vacuurarfzgd non-abelian
gauge theories. In the hamiltonian formulatiorDn= d 4+ 1 dimensions and temporal gauge, the
vacuum wave functional satisfies the Schrbdinger equation:

/ dd{ 5 W 7 1Fa<>}wo[A]—Eowo[A] (1.1)

together with the Gauss-law constraint:

(5a°a +g£abCAk) WolA] = 0. (1.2)

oA

At large distance scales one expects that the wave functional assunedfettige form:

et ~exp[ / dx F3(x ] (1.3)

It has a property oflimensional reductiorfl, B, [3]: The computation of a spacelike loop in
d -+ 1 dimensions reduces to the calculation of a Wilson loop in Yang—Mills theadyEnclidean
dimensions. However, the true vacuum wave functional cannot be jastHik — it implies not
only Wilson’s area law, but alse.g.exact Casimir scaling of higher-representation string tensions,
which is not observed at asymptotic distances.

Recently, we have proposed a simple approximation to the vacuum waviohaimf the
(24 1)-dimensional SU(2) Yang-Mills theor}]|[4]

ab
WolAl=4 exp f% / dzxdzyBa(x)< \/_@:w> B*(y) |, (1.4)
Xy

whereB?(x) = F2,(x) denotes the color magnetic field strengta/A] is the covariant derivative in
the adjoint representatio? = % - %k the covariant laplacian in the adjoint representatieyis
the lowest eigenvalue df-2?), andmis a constant (mass) parameter proportionaj’te- 1/8.
The expressior (1.4) is written in the continuum notation, but assumed t@perfyr defined on a
lattice, where we choose

2
b
(~2%)y = 3 [26%8y— %P8 i~ %X - K13, ] (L5)
k=1
UEP(x) = %Tr [aauk(x)obulj )], (1.6)

andU,(x) denotes the link matrix in the fundamental representation.

2. Argumentsin favor of the proposed vacuum wave functional

In the original paper{[4], we have supplied a series of arguments girpthe proposed form
of the Yang—Mills vacuum wave functional:

LA similar form, but without the — crucial in our opinion — subtractiomgf was proposed by Samuﬂ [5]-
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1. In the free-field limit ¢ — 0), Wo[A] becomes the well-known vacuum wave functional of
electrodynamics.

2. The proposed form is a good approximation to the true vacuum alswdagdields constant
in space and varying only in time.

3. If we divide the magnetic field strengB{x) into “fast” and “slow” components, the part of
the vacuum wave functional that dependsBa,, takes on the dimensional-reduction form.
The fundamental string tension, at a giy@nis then easily computed @ = 3m/40.

4. If one takes the massin the wave functional as a free variational parameter and computes
(approximately) the expectation value of the Yang—Mills hamiltonian, one firatsathon-
zero (finite) value ofnis energetically preferred.

3. Lattice evidence

The above (analytic) hints are encouraging, but in no way sufficierdrigince anybody that
the simple vacuum wave functional, Eff. {1.4), is close to that of the true-¥4iflg ground state.
To assess how good or bad the approximate state is, some numerical tés¢vigable. For that
purpose, we compared a set of quantities computed in two ensembles of lattfitpications:

1. “Recursion” lattices— independent two-dimensional lattice configurations generated with
the probability distribution given by the proposed vacuum wave functiovidh, m fixed at
given 3 to get the correct value of the fundamental string tengip(3). The recursion
method was described with all details in Réf. [4].

2. Monte Carlo lattices— two-dimensional slices of configurations generated by Monte Carlo
simulations of the three-dimensional euclidean SU(2) lattice gauge theory withighdard
Wilson action; from each configuration, only one (random) slice at fixetidean time was
taken.

3.1 Massgap

The first such test was performed in Réj. [4]. We computed the equal-timeected3?-B?
correlator and determined the value of the mass gap from a best fit to itsemdjad fall-off at large
distances. The result for recursion lattices is compared in[Fig. 1 to thesvafube 0 glueball
mass computed in high-statistics simulations of the three-dimensional Yang—Malty theMeyer
and Teper([[6]. The deviations are at the level of at most 6%.

3.2 Coulomb-gauge quantities

Another set of quantities of interest are defined in the Coulomb gaugaslavgued by Gri-
bov [[{] and Zwanzige]8] that the low-lying spectrum of the Faddeepel operator in Coulomb
gauge probes properties of non-abelian gauge fields that are dordla confinement mechanism.
The ghost propagator in Coulomb gauge and the color-Coulomb potemtidiractly related to the
inverse of the Faddeev—Popov operator, and play a role in variotisientent scenarios. In par-
ticular, the color-Coulomb potential represents an upper bound on tlscphpotential between
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Figure 1: Mass gaps from ensembles of recursion lattices at varidtisda@ouplings, compared to the 0
glueball masses iB = 2+ 1 obtained in Ref.|]6] via standard lattice Monte Carlo methqFrom Ref.|]]4].)

a static quark and antiquark, which means that a confining color-Coulotehtj is a necessary
condition to have a confining static quark potentifl [9].

Our aim [10] was to see how well the proposed vacuum wave functi@mreproduce the
values of Coulomb-gauge observables that can be obtained by stdattiaedMC techniques. For
that purpose we had to measure them in Coulomb-gauge configuratioisudéstrwith the prob-
ability following from the square of our temporal-gauge vacuum wavetfonal. In the operator
formalism, the minimal Coulomb gauge is a gauge fixing within the temporal gauge cérttmant
local gauge invariance. (See R4f.][11] for a detailed discussion opthis.) The wave-functional
in Coulomb gauge is the restriction of the wave functional in temporal gaugartsvierse fields in
the fundamental modular regidx

yCoulbmbA 1 W[A], AL €A (3.1)
The vacuum expectation value of an oper&dn Coulomb gauge can then be computed from
(Q) = (WGUPMIQIA, ]| WEO™) = (Wo|Q [A] |Wo), (32)

i.e. we generate configurations following the probability distributig, transform them to the
Coulomb gauge, and evaluate the observébla the transformed configurationQ(denotes the
gauge transformation that brings the configuratdoto the minimal Coulomb gauge.) From the
path-integral representation of the vacuum state, we may also go[frdid3.2

(Q = (Q[%Axt=1t0)]) (33)
where the right hand side is the expectation value obtain&d=r3 Euclidean dimensions, aifal
is the gauge transformation which takes the gauge fieldtea g time-slice into Coulomb gauge.
Fig.[2 displays results for recursion and Monte Carlo latticggs-at9 on 32 lattice. The ghost
propagator in Coulomb gauge was computed from the inverse of the RadRig®mv operator (in
the subspace orthogonal to trivial constant zero modes due to latticelipgyip

Ix-yl=R - < <_D;W>j:>

, (3.4)

G(R) = ((#IA)5y)

x-yl=R
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Figure 2: The Coulomb-gauge ghost propagator (a) and the color-@uujootential (b) a3 = 9 on 32
lattice.

where

{5x,y_ﬁaﬁ(><) - 5y7x—ﬁaﬁ(y)} (3.5)

with b(X) = $Tr[Uk(x)] andag(x) = £ Tr[o®Ux(x)], while the color-Coulomb potential between a

static quark and antiquark located at poixendy is proportional to

(3.6)

V(R = — (AN D))

x-y|=R’

The agreement of the ghost propagator computed in both sets of lattices st glenfect
[Fig. B(a)], the differences are at the level of the size of symbols. @rother hand, there is a
considerable deviation of color-Coulomb potentials computed for the MGrdsisdrom those for
recursion lattices [Fid]2(b)]. Fortunately, it is not difficult to explain thigio of this deviation.
There exist, in both ensembles, “exceptional” configurations with a verytlosugh still positive)
lowest nontrivial eigenvalue of the Faddeev—Popov operator. Tdwd@gurations were extremely
difficult to gauge-fix to the Coulomb gauge. If one evaluates the potentialdn single configura-
tion, the exceptional ones possess a very high absolute value of theéigaethe origin,|V (0)|.

range of[\V(0)| Monte Carlo recursion

<10 867 786

10-20 99 148

20-100 32 58
100 - 200 2 4
> 200 0 2

Table 1: Numbers of configurations in different rangesf0)| at 3 = 9 on 32 lattice.
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Figure 3: The color-Coulomb potential far = 10 (left) andk = 20 (right). 8 = 9, 32 lattice.
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Figure 4: The color-Coulomb potential far = 100 (left) and without cut (right)3 = 6, 24 lattice.

One can then classify configurations by their value®/¢0)|, and evaluate average potentials from
sets of configurations satisfying a number of cuyt®/(0)| < k;,i = 1,2,...,K}. For illustration,
Table[]L lists numbers of configurations in a couplé\)| bins atB = 9 (32 lattice).

Fig. B shows results for two values &fat § =9 (32 lattice). The potentials agree quite
well for lower k cut (satisfied by about 80% lattices), but the differences (and ems)rgrow with
increasingk. The problem appears even more spectacul# at6 (24 lattice, Fig.[#). There
is close agreement of color-Coulomb potentials between Monte Carlo amcicet lattices up to
the cutoffk as high as 100, but then a single recursion lattice with extremely high valive ®f
completely distorts the picture. Generally, the intervals with Hgl®)| values are very unequally
populated and lead to wild fluctuations of the results, when thecastincreased. We believe
that approximate agreement would be restored with sufficient (but aflyibuge) statistics, even
though some differences might persist.

4. Conclusion and outlook

The proposed vacuum wave functional for the temporal-gauge SWH@Ry-Mills theory in
2+1 dimensions, Eq[(3.4), seems a fairly good approximation to the truadystate of the theory.
We have added two new pieces of evidence in its favor:
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1. The ghost propagator in Coulomb gauge is practically identical in riecuasd Monte Carlo
ensembles.

2. With the same statistics of rare exceptional configurations we expedhalsolor-Coulomb

atu

potential from recursion lattices to be close to that determined from Monte [a#ices.

Our further goals are to compare consequences of our proposakis atkisting in the liter-
re (seee.g. [[L7]), to determine the wave functional in numerical simulations for typical field

configurations by the method of Reff.J13], to improve on the variational esginfahe parameter
m, and to generalize the proposal to the realistic casetof 8limensions.
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