
P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
2
8
4

The glueball spectrum at large N

Biagio Lucini
School of Physical Sciences, Swansea University
Singleton Park, Swansea SA2 8PP, UK
E-mail: b.lucini@swansea.ac.uk

Antonio Rago
Department of Physics, Bergische Universität Wuppertal
Gaussstr. 20, D-42119 Wuppertal, Germany
E-mail: rago@physik.uni-wuppertal.de

Enrico Rinaldi∗
SUPA, School of Physics and Astronomy, University of Edinburgh
Edinburgh EH9 3JZ, UK
E-mail: e.rinaldi@sms.ed.ac.uk

The lowest-lying glueball masses are computed in SU(N) gauge theory on a spacetime lattice
for constant value of the lattice spacing a and for N ranging from 3 to 8. The lattice spacing
is fixed using the deconfinement temperature at temporal extension of the lattice NT = 6. The
calculation is conducted employing in each channel a variational ansatz performed on a large
basis of operators that includes also torelon and (for the lightest states) scattering trial functions.
This basis is constructed using an automatic algorithm that allows us to build operators of any
size and shape in any irreducible representation of the cubic group. A good signal is extracted
for the ground state and the first excitation in several symmetry channels. It is shown that all the
observed states are well described by their large N values, with modest O(1/N2) corrections. In
addition spurious states are identified that couple to torelon and scattering operators.
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1. Introduction

SU(N) gauge theories in the large N limit play a central role in the gauge-gravity correspon-
dence and have become the subject of a line of numerical investigations on the lattice. In addition
to determining values for observables in the large N limit, lattice calculations provide their correc-
tions at finite N. As dictated by the diagrammatic expansion [1], these corrections can be expressed
as a power series in 1/N2 for the quenched theory and in 1/N in the dynamical case. The emerging
picture is that at least for the quenched theory only the leading correction of O(1/N2) is sufficient
to describe the system at any finite value of N bigger than two at a level of accuracy of the order
of a few percents. In order to assess the reliability of various analytical methods based on the large
N framework (which often have to resort to other approximations in addition to taking the large N
limit), it is important to compare their predictions to the lattice data for observables that are well
under control in both approaches. The glueball spectrum in the pure Yang-Mills theory is one of
the easiest observables to compare. Previous numerical calculations at large N have been recently
reviewed in [2].
In this work we provide the first determination of the large N glueball spectrum (obtained with an
extrapolation including values of N up to eight) in several irreducible representations of the lattice
rotational group and for both values of parity and charge conjugation. We are also able to disen-
tangle genuine single-particle states from spurious or multi-particle resonances that are present on
finite volume lattice simulations.

2. The method

The lattice discretisation of SU(N) Yang-Mills theory used throughout this work is entirely
conventional. We consider the system defined on an isotropic four-dimensional torus of linear size
L. If a is the lattice spacing, the number of points in each direction is given by NL = L/a. We used
the Wilson action for the lattice theory, given by

S = β ∑
i,µ>ν

(
1− 1

N
Re Tr

(
Uµν(i)

))
, (2.1)

where Uµν(i) is the parallel transport of the link variables along the elementary lattice plaquette
and β is defined as β = 2N/g2

0, with g0 the bare gauge coupling. In order to compare quanti-
ties at fixed lattice spacing across different SU(N) groups, it proves useful to set the scale using
the (pseudo–)critical coupling of the deconfinement transition at fixed temporal extent NT = 6. A
NL = 12 lattice for β = βc(NT = 6) gives a glueball spectrum in the scaling region and free from
large finite size artefacts [3].
In general, masses of bound states on the lattice are extracted from the exponential decay of con-
nected correlation functions between operators with the desired quantum numbers. In lattice Yang-
Mills theory these operators are constructed using traces of path ordered products of links around
closed loops. Moreover, the links used in the operators are smeared and blocked [4, 5] several times
in order to obtain smooth operators on physical length scales that project onto the low–lying states
of the spectrum. A variational ansatz for the correlators is also employed: for every set of quantum
numbers JPC we measure a matrix of correlators between different operators and we look for their
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linear combination that has the best overlap onto the state we are interested in. This allows us to
obtain the mass of the groundstate and of the first excitations of the spectrum with the smallest
possible systematic errors (for more details on the variational technique see Ref. [6]).
At finite volume, the single–particle glueball spectrum receives non–negligible corrections from
multi–glueball states. Moreover, when the system is closed with periodic boundary conditions
(like in our case) topological excitations wrapping the compact direction (torelons) with the same
quantum numbers of glueballs appear; if not correctly accounted for, these states can affect signifi-
cantly the measured glueball spectrum. In order to control these spurious contributions, we include
in the variational set operators that best overlap with two–glueball and torelon states.

3. The operators

On the lattice, the continuum quantum numbers JPC are replaced by the ones labelling the
irreps. of the cubic symmetry group combined with reflections and charge conjugation, giving a
total of 20 symmetry channels RPC. An operator in the channel RPC is obtained from the gauge–
invariant, vacuum–subtracted operator Ō(t) by means of

Φ(t) = ∑
i

ciRi(Ō(t)) . (3.1)

In the equation above, Ri represents a transformation belonging to the full symmetry group of the
system and the coefficients ci depend on the channel RPC [7].
We built three different classes of operators, one that mainly projects on single–glueball states, one
for two–glueball scattering states and one for torelon excitations. The single–trace operator that we
use to project onto glueball states is simply defined as

OG(t) =
1

N3
L
∑
~x

Tr ∏
l∈C (~x)

Ul . (3.2)

In our definition of the variational set we used a wide range of different closed loops C , with
lengths ranging from 4 to 8 lattice spacing. In Fig. 1 we summarize the closed loops used in our
simulations and the number of operators built in each channel. Each of these operators is then
smeared and blocked four times.
An operator that projects onto scattering states of two glueballs is a double–trace operator. Our
trial operators for scattering states have the form

OS(t) = (OG(t)−〈OG〉)2 , (3.3)

where we used the definition of the single–trace operator in Eq. (3.2) and the same shapes listed in
Fig. 1. The local subtraction of 〈OG〉 is crucial in order to obtain the correct two–point function. A
more detailed discussion about the scattering operators can be found in Ref. [6].
The torelon operators have been created from products of two Polyakov loops lν winding around
opposite directions, in order to obtain an operator which transforms trivially under the centre of the
gauge group. We defined our operators as

OT (t) =
1

2N2
L

∑
µ 6=ν

∑
x

lν(x, t)l†
ν(x+ µ̂a, t) , (3.4)
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where the sum over µ runs on the spatial directions orthogonal to the one of the loops. By choosing
different shapes for the combination lν(x, t)l

†
ν(x+ µ̂a, t), we can obtain a fairly large variational set

projecting on torelon states as summarized in Fig. 2.

++ −+ +− −−
A1 8 2 1 3
A2 3 1 3 3
E 22 7 7 14
T1 19 24 48 27
T2 44 33 33 29

Figure 1: (Left) Shapes of basic prototypical paths used to construct operators OG(t). (Right) Number of
single–glueball operators included in the variational set for each symmetry channel. Each operator is then
smeared 4 times.

++ −+ +− −−
A1 2 1 0 0
A2 1 0 1 1
E 7 3 3 3
T1 3 3 14 9
T2 9 9 8 3

Figure 2: (Left) Paths used for the construction of operators OS(t) coupling with torelon states. Periodic
Boundary Conditions apply at the edges represented by the dashed lines. (Right) Number of OS(t) operators
included in the variational set for each symmetry channel. Each operator is then smeared 4 times.

4. The results

The states obtained after the variational procedure can be decomposed into their projection
onto the pure glueball states, the scattering states and onto the torelons:

Φ̂ = ∑
i

viΦi(t) ≡ αGΦG +αSΦS +αT ΦT ; mixA =
|αA|2

∑i |αi|2
; A ∈ {G,S,T} , (4.1)

where we also defined the relative projection (mixA). Masses extracted from correlators of Φ̂ with
mixS,mixT ≥ 20% can not be reliably interpreted as pure single–glueball resonances, because spu-
rious states are expected to propagate between the two sources.
After performing the variational calculation, the diagonal elements of the correlation matrix are
fitted with the single-cosh ansatz, which assumes that only one state dominates the signal. We are
often able to obtain overlaps of the order of 0.95, which proves the validity of the original varia-
tional ansatz. As a consequence, the fit generally works very well on the range 1≤ t ≤ 4 [6].
For all gauge groups, there is a high mixing between narrow glueball trial states and torelon states in
the first excitation of the E++ and in the second excitation of the A++

1 . Other states with a consistent
mixing with the torelons are the T+−

2 and the T−−1 , the latter mostly for N = 3,4. Since a calculation
involving scattering states is much more demanding in terms of computer time, we use the results
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from the computation involving only single-particle and torelon operators to target the channels
where mixing with multi-particle states is expected to affect significantly the results. At large N,
this is expected to happen for the excited states that are close to twice the energy of the groundstate.
It is then clear that the channel in which scattering states can potentially influence the measured
spectrum in a relevant way is the A++

1 , where we can extract several excitations. We perform calcu-
lations on separate sets of operators in the A1 channel (the full set and the sets obtained excluding
in turn scattering, torelon and single-glueball operators). The remarkable property shown by this
calculation is that when only scattering and torelon operators are used the lowest-lying state has a
mass that is much higher (roughly by a factor of two) than the mass of the groundstate extracted
with the full variational basis. Moreover, the latter appears always when single-particle operators
are included in the calculation. This is an indication that our multi-glueball set of operators projects
only on scattering states, as it should be. The scattering state seems to be slightly above the first
excited single-glueball excitation at any value of N (see for example the SU(3) spectrum of the
A++

1 channel in Fig. 3, where two different volumes are investigated).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

a
m

G+S+T G+S G+T S+T

mix
S
 ~ 18% mix

S
 ~ 58%

mix
S
 ~ 26%

mix
S
 ~ 83%

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

a
m

G+S+T G+S G+T S+T

mix
S
 ~ 31% mix

S
 ~ 31%

mix
S
 ~ 81%

Figure 3: Variational calculation for SU(3) using different sets of operators on a NL = 12 lattice (left) and
a NL = 18 lattice (right). The unfilled symbols represent masses that cannot be reliably interpreted as pure
glueballs.

Having determined the single–glueball spectrum at different values of N from 3 to 8, we
extrapolate to the N = ∞ limit using the functional form

amG(N) = amG(∞)+ c/N2 , (4.2)

dictated by the diagrammatic expansion and already used with success in Ref. [3]. We find that
this ansatz works for all the measured states (including the excitations) for N ≥ 3. In general, the
central value of c is found to be small (always of order one or below), as it is expected for a generic
coefficient in a well-behaved expansion. For most of the states we find only modest corrections to
the N = ∞ value of the mass: with a few exceptions, c is compatible with zero and a fit with only
the leading term amG(∞) in Eq. (4.2) gives a result that is compatible with the fit that includes also
the O(1/N2) correction [6]. In Fig. 4 we show the large–N extrapolation of the groundstate and the
first two excitations of the would–be continuum scalar 0++ glueball, together with the groundstate
and the first excited state of the tensor 2++ glueballs.
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Figure 4: Extrapolation to N→ ∞ of the states in the A++
1 channel (left) and in the E++ channel (right).

The single–glueball spectrum determined in this work is plotted in Fig. 5 and it is compared
with the known spectrum at the same lattice spacing taken from Ref. [3]. The latter work achieves
a comparable precision for the A++

1 , the E++ and the A++?
1 , but in this study we are able to measure

seventeen more states. Moreover, the states present in both studies are compatible.
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Figure 5: The spectrum at N = ∞. The yellow boxes represent the large N extrapolation of masses obtained
in Ref. [3].

5. Conclusions

In this work, we have studied numerically on the lattice the glueball spectrum in Yang-Mills
SU(N) gauge theories in the large N limit. Using an automated technique for constructing trial
wave functionals in all possible symmetry channels, we have built a large variational basis that has
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enabled us to obtain a large number of states, including some excitations. Moreover, the inclusion
of functionals that best overlap with scattering and torelon states has allowed us to unambiguously
exclude multi-particle states or finite-size artefacts from the spectrum of narrow resonances. This
is a significant advance in our understanding of the large N glueball spectrum from first principles.
With little or no modification, the technique we have presented in this work will also prove helpful
in related problems, like the lattice study of glueballs in QCD and the study of the low-energy
spectrum of confining flux tubes.
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