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For the non-perturbative analysis of the topological content of Yang-Mills theories, it is essential

to disentangle long-range structures from short-range fluctuations. Some time ago, one of us

proposed to use the adjoint modes of the Dirac operator for this purpose. In this talk we analyse an

implementation of this idea that associates two Weyl fermionic modes in the adjoint representation

to every gauge field configuration. The densities of these modes provide a filtered image of the

self-dual and anti self-dual parts of the gauge action density. We present successful tests on the

performance of this proposal on a set of initial gauge field configurations.
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1. Introduction

In the past years several authors have devoted some effort to the analysis of the topological
structures present in pure Yang-Mills theory on the lattice. Apart from global information such as
the topological susceptibility, it is interesting to extract local one, such as theinstanton size distri-
bution. In some cases one might be able to check certain ideas and proposals relating these topo-
logical structures to chiral symmetry breaking and confinement. In this program the battlehorse
is the roughness of lattice Monte-Carlo configurations, having its origin in divergent ultraviolet
fluctuations. To tame this noisy background several ideas have been proposed. In particular, cool-
ing and smearing algorithms produce smoother configurations which are assumed to preserve the
long-range structure of the original one. However, these methods havebeen criticised since they
may produce some distortions on the shape distribution of local structures. Aproposed alternative
is to use filtering methods based on the Dirac operator or other differential operators [1] (see for
example [2] and references therein). For the case of the Dirac operator, the main idea is the rela-
tion between fermions and topology given by the Atiyah-Singer index theorem and the correlation
between the gauge action density and the local density of the eigenstates of the Dirac operator. In
practise, however, these methods are not totally free of ambiguities. For example, when fermions
in the fundamental representation are used to reconstruct the topologicalcharge density the ability
to reproduce the topological structure depends, in a rather strong way,on the number of modes in-
cluded in the reconstruction. In any case, even for noiseless configurations the shape of the filtered
density does not coincide with the corresponding action density.

In this talk we analyse an alternative proposal, presented in [3], based on the use of the adjoint
representation of the Dirac operator. The advantage of this method is that itis based upon a single
mode and gives a perfect match for classical solutions of the equations ofmotion. In the next
section we will give details of the method and its lattice implementation. In Section 3 we will test
its performance by analysing its filtering capacity for a series of initial gaugefield configuration.

2. Description of the method

For every gauge field configuration we will construct two associated classical Weyl fermionic
fields in the adjoint representation,ψ±(x), whose densities,||ψ±(x)||2, correspond to a filtered
image of the self-dual and anti self-dual parts of the initial gauge field action density. The Weyl
spinorial fields have componentsψa

α ±(x) whereα is a 2-component spinor index, anda is the
colour index takingN2−1 values. From now on we will refer to the fieldsψ± asadjoint filtering
modesor AFM.

An important property that any filtering method should satisfy is that for smoothconfigu-
rations the procedure must reproduce the classical structures without distortion. The main idea
behind the method introduced in Ref. [3] is that for configurations that aresolutions of the classical
equations of motion (classical solutions) there is an optimal choice of the spinorial field in the ad-
joint representation that reproduces exactly the shape of the (anti)self-dual part of the gauge action
density. This is obtained choosing the AFM,ψ±, as the chiral components of the supersymmetric
zero-mode of the Dirac operator, defined by:

ψ =
1
8

Fµν
[

γµ ,γν
]

V , (2.1)
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whereV is an arbitrary constant spinor. This mode has three interesting properties:

1. It is a zero-mode:/Dψ = 0.
2. It satisfies the reality condition, Im(ψa

1±(x)) = 0 ∀a,x.
3. Its density is exactly proportional to the (anti)self-dual part of the gauge action density.

Thus, for a classical solution, if we select a mode satisfying properties 1 and 2, then by virtue of
the third property, we obtain an optimal image of the field density structure.

For a general gauge field configuration, our method consists in finding theWeyl-spinor fields
in the adjoint representation that satisfy properties 1 and 2 as much as possible. Different versions
of the method follow from the relative importance given to both properties. Previous tests [3, 4]
were done by looking first at the subspace of low-lying eigenmodes of theadjoint Dirac equation
and then selecting the combination which best satisfies the reality condition as theAFM mode.

Here we will use an alternative more elegant proposal, also presented in Ref. [3], in which the
reality condition (property 2) is imposed exactly. The other condition is implemented by requiring
that the Weyl spinor is an eigenvector of lowest eigenvalue of− /D2. For a left-handed (positive chi-
rality) spinor this becomes−DD̄, whereD ≡ Dµσµ (D̄ ≡ Dµ σ̄µ ) are the Weyl operators. Actually,
in the adjoint representation all eigenvalues are doubly degenerate due toeuclidean CP invariance.
Then, using any eigenvectorψ and its charge conjugateψC = σ2ψ∗ one can form a colour vector
of quaternionic matrices

(ψ ,ψC) = Ψµ
±(x)σµ , (2.2)

whereσµ = (I ,−i~τ), σ̄µ = (I , i~τ) andτi are the Pauli matrices. The eigenvalue equation becomes
an equation acting on quaternionic matrix fields, and the reality condition amountsto Ψ0

±(x) = 0.
In summary, the positive chirality AFM mode is defined by the eigenvalue condition:

−DD̄Ψi
+(x)σi = λΨi

+(x)σi , (2.3)

or equivalently
O+

i j Ψ
j
+(x) = λΨi

+(x) , where O+
jk =−DµDνηµν

α η̄αk
j , (2.4)

andη andη̄ are the ‘t Hooft symbols. The last expression can be expanded and weget

O+
i j =−δi j D

2
µ − εi jkηµν

j DµDν =−δi j D
2
µ + iεi jk(Ek+Bk) . (2.5)

Notice, that theO+ operator is a positive definite, real, symmetric operator, so that its eigenvalues
are positive real numbers. For gauge configurations which are solutions of the classical equations
of motion the lowest eigenvalue vanishes and generically is non-degenerate. The corresponding
eigenvector is the supersymmetric zero modeΨi

+(x) ∝ (Ei +Bi).
For arbitrary gauge configurations the minimum eigenvalue ofO+ is non-zero. Its corre-

sponding eigenvector is, by definition, the AFM mode. Its density provides the filtered version of
the self-dual part of the action density. The usefulness of the method depends on its capacity to
eliminate high frequency noise without altering the shape of smooth structures. In this talk we will
present the results of our tests done on both smooth and rough configurations.

The previous formulae can be repeated for the negative chirality mode, which provides a fil-
tered version of the anti-self-dual part of the action density. The corresponding operator is now
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replaced by
O−

i j =−δi j D
2
µ − iεi jk(Ek−Bk) . (2.6)

In order to obtain a lattice implementation of the filtering procedure it is more convenient to
work with the overlap Dirac operator and construct the hermitian, positive definite matricesH2

± =

P±(γ5Dov)
2P±, whereP± are the projectors onto the positive and negative chirality modes. The

two-fold degeneracy associated with CP invariance also holds on the lattice,so that the operators
can be taken to act on quaternionic vectors. Imposing the reality conditions leads to the

O±
L = P0H2

±P0 , (2.7)

where the action ofP0 on a quaternionic field is given byP0Ψ = Ψ− 1
2σ0Tr(σ0Ψ).

The AFM modes are the eigenvectors of lowest eigenvalue ofO±
L and can be obtained by a

conjugate gradient algorithm. Details of the technique used to compute the overlap Dirac operator
and other numerical aspects can be seen in Ref. [5]

3. Testing the filtering method

In this section, we present the results of our tests of the filtering procedure when applied to
various lattice configurations. First, we apply it to an instanton configuration. Being a classical
solution the method should work well, but it will allow us to quantify the finite volume and dis-
cretisation effects. Next we apply it to a series of instanton-anti-instanton (IA) pairs with varying
separations. This is intended to monitor possible distortions and problems whichcould occur when
applied to smooth configurations which are not classical solutions of the equations of motion. Fi-
nally, we will go back to the single instanton case and add stochastic noise to it. The filtering
method should be able to reduce this noise and produce a neat image of the underlying smooth
configuration.

3.1 Results for Classical solutions

The first test is done over a set of smooth,Q=1, SU(2) instanton configurations generated
by cooling. In this case, theO+ operator should have one zero-mode corresponding exactly to the
supersymmetric zero-mode. As will be discussed below, discretisation and finite volume effects
may shift the corresponding eigenvalue from zero. Still, we observe thatthe density of the lowest
eigenvector of theO+ operator reproduces to an excellent degree the instanton action density.
Fitting both the action and the AFM mode densities to the continuum formula, we extract instanton
positions and sizes that differ at most in∆X = 0.01a, and in∆ρ = 0.05ρ, respectively.

In contrast to the situation in the continuum, the lowest eigenvalue ofO±
L is different from

zero. This is due to discretisation errors and finite volume effects. The latterarise for the case of
periodic boundary conditions (PBC), becauseQ=1 classical solutions do not exist on a periodic
torus [6]. This is, however, not the case if twisted boundary conditions (TBC) are used instead.

To explore both effects we have generated a large set of SU(2) instanton configurations with
varying sizes for both PBC and TBC. Fig. 1a displays the lowest eigenvalue (λ1) of theO+ operator
as a function of the inverse instanton size squareda2/ρ2. As expected,λ1 approaches zero in the
continuum limit asa2/ρ4, with a coefficient of approximately 8·10−4.
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Figure 1: (a) The lowest eigenvalue of theO+ operator, on a sizeρ instanton background, is
displayed as a function ofa2/ρ2 for two different lattice sizes and boundary conditions. The finite-
volume effects become sizable for periodic BC andL < 4ρ. They are negligible for time-twisted
BC (k=(1,1,1), m=(0,0,0)). (b) The three lowest eigenvalues of theO+ operator, on an IA pair
background, are displayed in terms of the IA distance (d). Level crossing appears atd ∼ 1.8ρ.

In what concerns finite-volume effects, a clear distinction can be observed between periodic
and twisted boundary conditions, as expected. In the twisted case, classical solutions exist for all
torus sizes and we observe no corrections to the lowest eigenvalue otherthat those associated to
discretisation effects. For periodic BC, however, we observe a large deviation from the expected
behaviour forL . 4ρ.

3.2 Smooth non-classical configurations

According to our proposal, even for non-classical configurations thelowest eigenvector of
the O+ (O−) operator should provide the filtered action densities of the self-dual (anti-self-dual)
part of the gauge field. Since only for classical solutions there is an exact supersymmetric zero-
mode, it is not guaranteed that the filtered image of non-classical configurations has no distortions.
In order to test this, we have analysed a set of instanton-anti-instanton (IA) configurations with
varying separation. The set is generated by cooling an initial well-separated pair and monitoring
the different stages of the IA annihilation process. Fig. 2 displays one snapshot corresponding to
IA distanced = 3.5ρ. We compare the AFM densities with the self-dual and anti-self-dual parts
of the action density. The agreement is excellent and, as expected, theO± lowest eigenvectors
are only sensitive to objects with the appropriate chirality. In order to obtain amore quantitative
comparison, we extract the size parameter of the (anti-) instanton by fitting both the AFM and
action densities. Both determinations differ by 5% at most as long as the IA separation is larger
than 2ρ.

Although the Dirac operator does not have zero-modes on IA backgrounds, we expect the
lowest eigenvalue in each chiral sector to go to zero as the I-A separationis increased. To show that
this is indeed the case, we display in Fig. 1b the three lowest eigenvalues of theO+ operator versus
the IA separation. The smallest one is well described by an exponentially decreasing function of the
IA separation asd2λ1 = 16 exp(−2d/ρ). For distancesd ∼ 2ρ we observe a level crossing in the
spectrum of theO± operators. For even smaller separations the lowest mode no longer reproduces
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Figure 2: For an instanton-anti-instanton pair, at separationd= 3.5ρ, we display 2-d slices of:
(Left) the self-dual (red) and the anti-self-dual (blue) parts of the action density. (Right) the AFM
density corresponding to the positive (red) and the negative (blue) chiralities.

Figure 3: Comparison of the gauge action density (left) and the AFM density (right) for a configu-
ration generated by applying ten heat-bath sweeps (β = 4) to a smooth instanton configuration.

the IA gauge action density. Hence, we conclude that theO± operators can identify the components
of the IA pair as long asd > 2ρ.

3.3 Configurations with stochastic noise

The most important test, prior to its application to Monte Carlo configurations, is toshow that
the procedure does indeed filter out high frequency noise from the starting configuration, exhibit-
ing its long-range structures. For this purpose, we began by generatingseveral smooth instanton
configurations and added random noise to them. The way this was done wasby applying to the
configuration a small number of heat bath updates corresponding to a Wilsonaction with different
values ofβ . The small number of updates and the large values ofβ guarantee that the instanton
is not destroyed in the process, but considerable noise is added. The results presented here corre-
spond to an initial instanton of sizeρ = 3.4a, on a periodic/twisted lattice of size 144, to which ten
heat bath sweeps (withβ = 30,20,8,7,6,5, and 4) have been applied. The process is repeated with
ten different initial random seeds giving rise to a heated instantonensemblefor eachβ value and
BC. A characteristic example is shown in Fig. 3, where we display the AFM andthe gauge action
densities for one rough configuration withβ = 4 and PBC. While the action density dramatically
roughens under heating, the AFM density is practically insensitive to the highfrequency modes.
The same is observed in the twisted case and for all theβ values analysed. This is a good proof of
the extraordinary filtering capacity of our method

The ability of the method to recover the initial instanton structure is related to the fact that,
despite the eigenvalue becoming non-zero after the addition of noise, thereseems to be no level
crossing and the AFM is always cleanly separated. This is clearly seen in Fig. 4 where we display
the four lowest eigenvalues of theO+ operator as a function ofβ−1, for periodic (left), and twisted
(right) boundary conditions. Notice that not only is there no level crossing, but also the gap seems
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Figure 4: We display the four lowest eigenvalues of theO+ operator for the ensemble of heated
instanton configurations described in section 3.3. For each value ofβ we plot the eigenvalues
averaged over the ensemble of heated configurations, with error bars corresponding to the variance
of the sample. The continuum lines correspond to a second order degreepolynomial fit inβ−1.

to remain constant when the size of the noise (controlled byβ−1) increases. The data for the lowest
(AFM) and first excited eigenvalues ofO± are well fitted by a second degree polynomial inβ−1,
which is the form predicted by perturbation theory around the instanton configuration. The constant
term is fixed to the value obtained for the instanton before heating (which forthe ground state is
determined by finite-volume and finite lattice spacing errors). The remaining coefficients turn to
be very similar for both eigenvalues and boundary conditions.

4. Conclusions

In this talk we have analysed the results of the filtering method proposed in Ref. [3] when
applied to different lattice configurations, some smooth and some rough. Theresults are quite
encouraging and point out to the main difficulties one might encounter when applying the method
to thermalised Monte Carlo configurations. Additional details and tests can be found in Ref. [5, 7].
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