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We study the pure SU(3) gauge theory in 2+1 dimensions on the lattice using ’t Hooft’s twisted
boundary conditions to force non-vanishing center flux through the finite volume. In this way we
measure the free energy of spacelike center vortices as an order parameter for the deconfinement
transition. The transition is of 2nd order in the universality class of the 2d 3-state Potts model,
which is self-dual. This self-duality can be observed directly in the SU(3) gauge theory, and it
can be exploited to extract critical couplings with high precision in rather small volumes. We
furthermore obtain estimates for critical exponents and the critical temperature in units of the
dimensionful continuum coupling. Finally, we also apply our methods to the (2+1)d SU(4) gauge
theory which was previously found to have a weak 1st order transition. We nevertheless observe
at least approximate q = 4 Potts scaling at length scales corresponding to the lattice sizes used in
our simulations.
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1. Introduction

The motivation of our study is to see how much we can learn about the deconfinement tran-
sitions in pure SU(N) gauge theories at finite temperature from universality and scaling. As these
concepts require second order phase transitions, in 3+1 dimensions we are only left with SU(2),
where spatial center vortex sheets share their universal behavior with interfaces in the 3d Ising
model. This has been studied in [1]. In 2+1 dimensions on the other hand, we can apply analogous
methods to both SU(2) and SU(3) which then exhibit a 2nd order deconfinement transition. The
latter is in the universality class of the 2d Ising model for which by far the largest pool of exact
results is available. This was exploited in [2] for a high precision determination of critical cou-
plings and temperature, and in [3] for accurate finite-size scaling, a reflection of self-duality and
a precision determination of the behavior of the continuum sting tension and its dual around the
phase transition. Here, we report on first results from applying the same methods to SU(3) and
gradually also to SU(4) in 2+1 dimensions.

For SU(3), the dimensionally reduced spin model with the same global symmetry and the uni-
versal properties of the Z3 center-symmetry breaking deconfinement transition is the 3-state Potts
model. For SU(4), the Z4 center symmetry alone does not uniquely specify the effective spin model
to describe the dynamics of Polyakov loops. SU(4) is a rank-three group and has three fundamen-
tal representations, 4, 4̄ and 6. So even the simplest effective Polyakov-loop model will consist
of two distinct real terms, with nearest neighbor couplings between loops in 4/4̄ representations
and between loops in the 6 representation [4]. Depending on the relative weight between the two,
the corresponding spin model could be any of the Z4-symmetric Ashkin-Teller models with three
energy levels per link and continuously varying critical exponents between the q = 4 Potts model
class and that of the planar or vector Potts model which corresponds to two non-interacting Ising
models in this case. Even though the more recent studies of the (2+1)d SU(4) gauge theory [5, 6, 7]
indicate that the transition is weakly 1st order, we do find, at least approximately at the length scales
corresponding to our spatial lattice volumes, a universal scaling which seems closest to the standard
q = 4 Potts case. Because this might not seem very natural, it would be interesting to explain that.

One special feature of the q-state Potts models in 2 dimensions is that they are self-dual for all
q, no matter whether they have 1st (q> 4) or 2nd (q≤ 4) order transitions. With a 2nd order transition
and scaling, this self-duality is reflected in the (2+1)d gauge theory: the spatial center-vortex free
energies are mirror images around criticality of those of the confining electric fluxes [3]. Here we
verify this explicitly for SU(3), and show how it can be used to remove the leading (universal)
finite-size corrections in the determination of critical couplings from finite volume extrapolations.

2. Concepts and Methods

’t Hooft’s twisted boundary conditions, center vortices and electric fluxes: In a theory with-
out matter fields where the gauge fields represent the center of the gauge group trivially, the bound-
ary conditions in a finite Euclidean 1/T ×Ld volume are only fixed up to center elements giving
rise to Nd gauge-inequivalent boundary conditions for a pure SU(N) gauge theory in d+1 dimen-
sions. These twisted boundary conditions [8] can be classified either as magnetic twists defined in
purely spatial planes or as temporal twists in the planes oriented along the Euclidean time direction.
The latter are labeled by a vector~k ∈ Zd

N . In the following we will only consider temporal twists
because the magnetic twists are irrelevant for the deconfinement transition.
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Temporal twist introduces spatial center vortices whose free energies provide order parame-
ters for the deconfinement transition. These vortex free energies Fk (per temperature T ) are de-
fined as ratios Rk(~k) ≡ Zk(~k)/Zk(~0) = e−Fk(~k) of partition functions Zk(~k) with temporal twist ~k
over the periodic ensemble Zk(~0). Analogously, one defines the electric flux free energies Fe via
Re(~e)≡ Ze(~e)/Ze(~0) = e−Fe(~e). These describe gauge-invariant color-singlet free energies of static
fundamental charges at some point ~x with mirror anti-charges in a neighboring volume at ~x+L~e
along the direction of the flux ~e relative to the no-flux ensemble Ze(~0) = ∑~k Zk(~k), which is an
enlarged ensemble corresponding to fluctuating temporal twists, see [1, 3]. The electric flux and
spatial center vortex partition functions are related by a d-dimensional ZN Fourier transform,

Re(~e) =
1
N

〈
tr
(
P(~x)P†(~x+~eL)

)〉
no-flux =

(
∑~k e2πi~e·~k/N Rk(~k)

)
/∑~k Rk(~k) . (2.1)

Universality and self-duality: By the Svetitsky-Yaffe conjecture, a d + 1 dimensional gauge
theory with second order deconfinement transition has the same universal properties as a d dimen-
sional spin model with the same global ZN symmetry [9]. The Polyakov loop correlators of the
gauge theory near criticality behave in the same way as those of spins in the spin model. Spatial
center vortices correspond to spin interfaces, which are frustrations where the coupling of adjacent
spins favors cyclically shifted spin states rather than parallel ones for the usual ferromagnetic cou-
plings. Consequently, the center-vortex free energies Fk show the universal behavior of interface
free energies. For the 2+1 dimensional SU(3) gauge theory the corresponding spin model is the 2d
3-state Potts model. Like all q-state Potts models in 2 dimensions, it is self-dual.

Kramers-Wannier duality is of course a very well-known concept from statistical physics [11].
It provides exact maps between the spin systems and their dual theories in terms of disorder vari-
ables on the dual lattice. In 2 dimensions, just as for the Ising model (q = 2) these dual theories
of the q-state Potts models are again q-state Potts models, but at a dual temperature T̃ which is
swapped around criticality at Tc as compared to the original model. Duality transformations in a
finite volume do not preserve boundary conditions, however. Periodic boundary conditions on one
side generally correspond to fluctuating boundary conditions on the other [12]. This was explicitly
demonstrated for the duality between the 3d Ising and the Z2-gauge model in [13]. The exact finite-
volume duality transformation for the 2d q-state Potts models is given in [3]. Here it suffices to
note that its structure is precisely that in (2.1) with q = N. It expresses the partition function of the
dual q-state Potts model with certain set boundary conditions at a temperature T̃ as a 2d Zq-Fourier
transform over Potts models with all possibilities of cyclically shifted boundary conditions at tem-
perature T . In the (2+1)d gauge theory, the temperature is the same on both sides of the ZN-Fourier
transform (2.1). But within the universal scaling window around a 2nd order phase transition, as a
consequence of the self-duality of the spin model, the free energies of spatial center vortices and
those of the confining electric fluxes are mirror images of one another around Tc.

Numerical procedure: To implement ’t Hooft’s twists on the lattice we multiply a stack of pla-
quettes by the corresponding center element z ∈ ZN so as to fix the corresponding amount of center
flux through the planes with twisted boundary conditions. For the temporal~k-twists this introduces
thin spatial center vortices perpendicular to~k which separate regions where fundamental Polyakov
loops differ by the center phase z = e2πi k/N . They are thus like spin interfaces in the Potts model.
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Figure 1: Self-duality in SU(3) (Ns = 24, Nt = 2)

We use the snake algorithm [14] to compute the ratios Rk(~k) = Zk(~k)/Zk(~0) via products of
ratios of partition functions which differ by only one phase rotated plaquette to successively form a
vortex that wraps around the spatial volume perpendicular to~k. We use the standard Wilson gauge
action and a heatbath algorithm supplemented by a number of overrelaxation steps. SU(N) updates
are implemented as updates of SU(2) subgroups in the usual way [15].

3. Results

Self-duality in SU(3): As for SU(2) in 2+1 dimensions [3] the self-duality of the 3-state Potts
model is reflected in SU(3). The spatial center vortex and electric flux partition functions are related
by a Z3-Fourier transform as in (2.1) whose structure is the same as that of the finite volume duality
transformation of the Potts model. Its self-duality therefore implies that electric fluxes on one side
of the phase transition should resemble center vortex ensembles on the other.

Swapping the temperature T̃ ↔ T in the spin model near criticality amounts to x↔−x where
x =±L/ξ± is the finite-size scaling variable given by the ratio of the finite size L over the correla-
tion lengths ξ± = f±(±t)−ν , with ξ+ for x > 0 and t > 0 above Tc, and ξ− for x, t < 0, below. For
the gauge theory we use x =±TcL(±t)ν ∝ L/ξ± and control the reduced temperature t = T/Tc−1
by changing the lattice coupling. Within the universal scaling window, as functions of x, we should
then find that Rk(x) = Re(−x) for matching pairs of twist~k and flux~e. This is indeed the case also
for SU(3), as demonstrated in Fig. 1, where we compare the ratios of partition functions Rk and Re

for one unit of temporal twist and one unit of electric flux, i.e., both~k and~e either (1,0) or (0,1),
over the phase transition.

Critical couplings: There is a long history of methods to extract critical couplings or temper-
atures from simulations in finite volumes, going back to using pairwise intersections of Binder
cummulants on sucessively larger lattices [16]. Hasenbusch later demonstrated that the ratios of
partition functions with different boundary conditions could be used in the same way to obtain a
much more rapid convergence with very good estimates already from rather small lattices [17]. At
criticality, these ratios tend to universal values 0 < Rc < 1 in the thermodynamic limit. In [2] it was
therefore shown how to obtain critical couplings for gauge theories from intersecting the ratios Rk

of finite volume partition functions with these universal fixed points, once their values are known.
For (2+1)d SU(2) this led to an even faster convergence than their pairwise intersections. For the
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Figure 2: Convergence to βc (Nt = 4) from Rk(β ) = Re(β ) and Rk(β ) = Rc in SU(2) (left) and SU(3) (right).

2d Potts models with 2nd order transition, i.e., for q = 2,3 and 4, the universal numbers R(m,n)
c have

been obtained exactly, in terms of Jacobi theta functions, for all cyclic boundary conditions (with
m,n = 0,1, . . .q−1) in [10]. For q = 3 on a symmetric lattice they are,

R(1,0)
c = R(2,0)

c = 0.30499982 . . . , and R(1,1)
c = R(2,2)

c = R(1,2)
c = 0.19500018 . . . . (3.1)

Using a finite-size scaling ansatz for the vortex ensemble ratios Rk around criticality of the form

Rk(β ) = Rc +b(β −βc)N1/ν
s + cN−ω

s + · · · , (3.2)

we define pseudo-critical couplings βc(Ns,Nt) in a finite volume by requiring that Rk(β ) = Rc,

βc(Ns,Nt) = βc(Nt)− (c/b)N−(ω+1/ν)
s + · · · . (3.3)

These extrapolate to βc(Nt) from large spatial lattice sizes Ns at fixed numbers of time slices Nt . As
a byproduct this method gives numerical estimates of the correction to scaling exponent ω .

With self-duality, however, there is a Nt βc(Rk = Re) βc (Rk = Rc) Lit.
2 8.15309(11) 8.15297(57) 8.1489(31)†

4 14.7262(9) 14.7194(45) 14.717(17)†

6 21.357(25) - 21.34(4) ‡

8 27.84(12) - -

Table 1: SU(3) critical couplings from self-duality
(weighted means), intersection with the universal value
(extrapolated), and literature values from †[7], ‡[18].

yet more efficient method to determine βc

[3]. This is based on the simple observation
that one must then have Re(β ) = Rk(β ) for
like~e and~k at β = βc. In fact, one can eas-
ily convince oneself that with self-duality,

Re(β )=Rc−b(β −βc)N1/ν
s +cN−ω

s +· · · ,

with the same coefficients b and c as in (3.2).
Therefore, the leading finite-size corrections to βc when defined by Re = Rk cancel. At critical-

ity, Re(βc) = Rk(βc) = Rc+cN−ω
s + · · · , so the leading corrections only move the intersection point

vertically without shifting the so defined critical coupling. The gain is illustrated for both SU(2)
and SU(3) in Fig. 3. When intersecting Re = Rk, we form weighted means from sufficiently large
aspect ratios Ns/Nt where we assume that the estimates have converged within errors. These are
compared to the extrapolated values from intersecting Rk(β ) with the universal value Rc in Tab. 1.
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Figure 3: SU(4) critical couplings (left), and slopes d(Ns) compared to a power law with ν = 2/3 (right).

Critical temperature and correlation length exponent ν: In 2+1 dimensions the critical cou-
plings grow linearly with Nt to leading order at large Nt . The slope is given by the critical temper-
ature in units of the dimensionful continuum coupling, βc(Nt)/(2Nc) = (Tc/g2

3)Nt + · · · .
From our values for Nt = 4, 6 and 8 we then obtain Tc/g2

3 = 0.5475(3) corresponding to
Tc/
√

σ = 0.9938(9) with a zero temperature string tension
√

σ/g2
3 = 0.5509(4) from a weighted

average of the four values in [19]. This is consistent with Tc/
√

σ = 0.9994(40) from [7].
Moreover, because the spatial center vortex free energies Fk for sufficiently large L depend

only on L1/νt, and t ∝ (β −βc), when expanding Fk(β ) = − lnRc + d(Ns)(β −βc)+ · · · , we can
expect the slope at βc to behave as d(Ns)∼ N1/ν

s . The result from fitting our slopes for SU(3) with
Nt = 4 then gives ν = 0.82(4) as compared to ν = 5/6≈ 0.833 for the 2d 3-state Potts model.

Results for SU(4): The present conclusion from a sequence of studies of the (2+1)d SU(4) gauge
theory [5, 7, 6] is that the deconfinement transition is weakly 1st order. Especially the detailed
analysis in [6] was consistent with first order volume scaling laws. Here we assess to what extent
Potts model scaling describes the transition, at least approximately, and whether we find indications
of where our methods start to fail as we go to larger and larger volumes.

First, we extract critical couplings from
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Figure 4: Check of Potts model scaling (Nt = 4)

the pairwise intersections of the Fk’s for pairs
of lattices with Ns ratios of 2:1. This method
is independent of Potts scaling and yields
βc = 26.283(9) for Nt = 4. Then we com-
pare the so extrapolated value to that ob-
tained from intersecting the Fk’s with the 4-
state Potts universal value from [10]. The
latter has a smaller error because we have
more points to fit; it gives the consistent value
βc = 26.294(2). Pseudo-critical couplings
and fits for each method are shown in Fig. 3.
Both extrapolated values are consistent with
βc = 26.228(75) from [7] but deviate with some significance from βc = 26.251(16) given in [6],
where first order scaling was assumed in the infinite volume extrapolation of the critical coupling.
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If we furthermore extract a critical exponent ν from the slopes d(Ns) of Fk(β ) at βc as before,
see Fig. 3, we obtain ν = 0.60(2) from our data for Nt = 4 with βc = 26.283. Some systematic
uncertainty arises from what precise value is used here, however. Repeating the analysis for differ-
ent values in the one-σ interval around βc = 26.283, we find ν = 0.59(5). Of all the Z4-symmetric
Ashkin-Teller models, which have continuous ν ∈ [2/3,1], this seems to be at best consistent with
the lower bound ν = 2/3 for the q = 4 Potts model, in agreement with the earlier conclusion in
[5]. It is a general trend of our method, observed also for SU(2) and SU(3), that it underestimates
the critical exponent due to subleading finite-size effects, however. Finally, our present Nt = 4 data
with spatial lattice sizes up to Ns = 80 shows reasonably good Potts scaling as seen in Fig. 4 where
we plot the center-vortex free energy Fk(x) over the scaling variable x =±TcL(±t)ν with ν = 2/3.

4. Conclusions
We have studied the deconfinement transition in the pure SU(3) gauge theory in 2+1 dimen-

sions on the lattice. Using ’t Hooft’s twisted boundary conditions we have measured center-vortex
free energies and demonstrated that the self-duality of the associated Potts model is directly re-
flected in SU(3): the free energies of the confining electric fluxes are mirror images around Tc of
those of spatial center vortices. We demonstrated how this can be exploited to remove the leading
finite-size corrections in the determination of critical couplings from numerical simulations. We
do not yet have the data necessary to compute electric fluxes and to test self-duality analogously in
SU(4), but our available data does not show any significant violations of the q = 4 Potts scaling.
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