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1. Introduction

In SU(Nc) gauge theories without matter fields (gluodynamics) or matter in the adjoint representa-
tion the action and measure are both invariant undercenter transformationswhile the trace of the
Polyakov loop

P(~x) = trP(~x), P(~x) =
1
Nc

tr

(

exp i
∫ βT

0
A0(τ ,~x)dτ

)

, βT =
1
T

, (1.1)

transforms non-trivially and therefore serves as an order parameter for thespontaneous breaking
of center symmetrie. On the other hand the expectation valueof the Polyakov loop is related to the
free energie of an infinitely heavy quark,〈P〉∝ exp(−βTFq). At low tempertures gluons and quarks
are confined in mesons and baryons and it needs an infinite amount of energy to free them, while at
high temperatures confinement is lost and the energy becomesfinite. Thus the Polyakov loop also
serves as an order parameter for confinement and relates the breakdown of center symmetry to the
confinement-deconfinement phase transition. In such gauge theories confinement is equivalent to
the existence of an unbreakable string connecting a static quark anti-quark pair.

In contrast in QCD or gauge theories with fundamental matterfields the center symmetry
is explicitly brokenand the Polyakov loop ceases to be an order parameter. As a consequence the
string can break due to dynamical light quark production andin this sense confinement is equivalent
to the existence of a string only atintermediate scales. It is widely believed that confinement is a
property of pure gauge theories and to clarify the relevanceof center symmetry it suggests itself to
study pure gauge theories whose gauge groups have a trivial center. The exceptional Lie groupG2

is the smallest simple Lie group with this property which is simply connected. In a pioneering work
the group in Bern has been convincingly demonstrated thatG2 gluodynamics shows a first order
finite temperature confinement-deconfinement phase transition [1, 2, 3]. As in QCD confinement
refers to confinement at intermediate scales, where a Casimir scaling of string tensions has already
been reported [4] and on large scales string breaking is expected to occur due to spontaneous gluon
production [5] but so far not confirmed.

Additionaly the gauge groupSU(3) of strong interaction is a subgroup ofG2 and this ob-
servation has interesting consequences [2]. With a Higgs field in the fundamental 7-dimensional
representation one can break theG2 gauge symmetry to theSU(3) symmetry via the Higgs mech-
anism. When the Higgs field in the action

S[A,φ ] =

∫

d4x

(

1
4g2 trFµνFµν +

1
2
(Dµφ ,Dµφ)+V(φ)

)

, (1.2)

picks up a vacuum expectation valuev, the 8 gluons belonging toSU(3) remain massless and the
additional 6gauge bosonsacquire a mass proportional tov. In the limit v→ ∞ they are removed
from the spectrum such thatG2 Yang-Mills-Higgs (YMH) theory reduces toSU(3) Yang-Mills
theory. Even more interesting, for intermediate and large values ofv theG2 YMH-theory mimics
SU(3) gauge theory with dynamical ’scalar quarks’.

The present paper deals withG2 gluodynamics in 3 dimensions and theG2 Gauge Higgs model
in 4 dimensions. The simulations are performed with an efficient and fast implementation of a local
hybrid Monte-Carlo algorithm. Below we shall calculate thepotentials at intermediate scales for
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Table 1: Representations ofG2 with corresponding dimension and Casimir values.

representationR [1,0] [0,1] [2,0] [1,1] [3,0] [0,2] [4,0] [2,1]

dimensiondR 7 14 27 64 77 77′ 182 189
Casimir eigenvalueCR 12 24 28 42 48 60 72 64
Casimir ratioC ′

R
1 2 7/3 3.5 4 5 6 16/3

static charges in the 8 lowest representations. We show thatin 3 dimensions the string tensions
on intermediate scales are proportional to the second orderCasimir of the representations and for
widely separated charges in the two fundamental representations we see a flattening of the potential
which signals the breaking of the connecting string. In 4 dimensions we investigate the phase
diagram a theG2 Gauge Higgs model and find a line of first order confinement-deconfinement
phase transitions connectingG2 andSU(3) gluodynamics and two deconfinement phases separated
by a second order phase transition. Details on the used algorithms and results can be found in [6].

2. The groupG2

G2 is the smallest of the five exceptional simple Lie groups and it is also the smallest simply con-
nected simple Lie group with a trivial center. It has dimension 14 and rank 2. The fundamental
representations are the defining 7 dimensional representation and the adjoint 14 dimensional repre-
sentation. It is a subgroup ofSO(7) and the gauge groupSU(3) of strong interaction is a subgroup
of G2. The corresponding coset space is a sphere [7],

G2/SU(3) ∼ S6, (2.1)

meaning that every elementU of G2 can be factorized as

U = S ·V with V ∈ SU(3) and S ∈ G2/SU(3). (2.2)

This decomposition is used in our simulations to compute theexponential map ofg2 → G2 [6].
Any irreducible representation ofG2 is characterized by its highest weight vectorµ which

is a linear combination of the fundamental weights,µ = pµ(1) + qµ(2), with non-negative integer
coefficientsp,q called Dynkin labels. The dimension of an arbitrary irreducible representation
R = [p,q] can be calculated with the help of Weyl’s dimension formula and is given by

dR =
1

120
(1+ p)(1+q)(2+ p+q)(3+ p+2q)(4+ p+3q)(5+2p+3q). (2.3)

Below we also use the physics-convention and denote a representation by its dimension. For exam-
ple, the fundamental representations are[1,0] = 7 and[0,1] = 14. An irreducible representation of
G2 can also be characterized by the values of the two Casimir operators of degree 2 and 6. Below
we shall need the values of the quadratic Casimir in a representation[p,q], given by

CR ≡ Cp,q = 2p2 +6q2 +6pq+10p+18q. (2.4)

For an easy comparison we normalize these ‘raw’ Casimir values with respect to the defining
representation byC ′

p,q = Cp,q/C1,0. The normalized Casimir values for the eight non-trivial repre-
sentations with smallest dimensions are given in Tab. 1.
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Figure 1: Left panel:Polyakov loop expectation values at the finite temperature confinement-deconfinement
transition on a 163×6 lattice. Right panel:Tunneling of the Polyakov loop and the (finite volume) phase
coexistence at the first order transition atβcrit = 9.765.

3. The confinement-deconfinement transition

In SU(3) the situation is described as follows: Quarks and anti-quarks transform under the
fundamental representations 3 and3̄ and their charges can only be screened by particles with non-
vanishing 3-ality, especiallynot by gluons. So in the confining phase the static quark anti-quark
potential is linearly rising up to arbitrary long distances. As a consequence the free energy of a sin-
gle quark gets infinite and the Polyakov loop expectation value vanishes. Hence in gluodynamics
the Polyakov loop serves as order parameter for theZ3 centre symmetry and for confinement.

In G2 we recall the decomposition of tensor products into irreducible representations,

(7)⊗ (7) = (1)⊕·· · ,
(7)⊗ (7)⊗ (7) = (1)⊕·· ·

(3.1)

The quarks inG2 transform under the 7-dimensional fundamental representation, gluons under the
14-dimensional fundamental representation. Similarly asin SU(3) two or three quarks can build a
colour singlet. Additionally three centre-blind dynamical gluons can screen the colour charge of a
single quark,

(7)⊗ (14)⊗ (14)⊗ (14) = (1)⊕·· · . (3.2)

Thus the flux tube between two static quarks can break due to gluon production and the Polyakov
loop does not vanish even in the confining phase. This shows that the Polyakov loop can at best
be an approximate order parameter which changes rapidly at the phase transition and is small (but
non-zero) in the confining phase. To characterise confinement we can no longer refer to a non-
vanishing asymptotic string tension and vanishing Polyakov loop. Instead we define confinement
as the absence of free colour charges in the physical spectrum. In the confining phase the static
quark anti-quark potential rises linearly only at intermediate scales. Nevertheless we see a clear
signal in the Polyakov loop and its distribution in the fundamental domain ofG2 at the confinement-
deconfinement transition (Fig. 1).
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4. Algorithmic considerations

4.1 Local hybrid Monte-Carlo

The corresponding lattice action for theG2 Yang-Mills-Higgs theory (1.2) reads

SYMH [U ,Φ] = β ∑
�

(

1− 1
7

trReU�

)

−κ ∑
xµ

Φx+µ̂ Ux,µΦx, Φx ·Φx = 1, (4.1)

whereΦ is a seven component normalized real scalar field. Although there exists a heat-bath
Monte-Carlo algorithm forG2 gluodynamics [3] we present a (local) HMC algorithm based on[8]
for several good reasons: The formulation is given entirelyin terms of Lie group and Lie algebra
elements and there is no need to back-project ontoG2, the autocorrelation time can be controlled
(in certain ranges) by the integration time in the moleculardynamics part of the HMC algorithm
and the inclusion of a (normalized) Higgs field is straightforward and does not suffer from a low
Metropolis acceptance rate (even for large hopping parameters). The LHMC algorithm has been
essential for obtaining the results in the present work. Since we developed the first implementation
for G2 it is useful to explain the technical details for this exceptional group. As any (L)HMC
algorithm for gauge theories it is based on a fictitious dynamics for the link-variables on the gauge
group manifold. The “free evolution” on a semisimple group is the Riemannian geodesic motion
with respect to the Cartan-Killing metric

ds2
G = κ tr

(

dU U
−1⊗dU U

−1) .

Without interaction the scalar fieldΦ is randomly distributed on the unit sphere and we set

Φx = OxΦ0 with Ox ∈ SO(7) (4.2)

and constantΦ0. In the (L)HMC-dynamics the interaction term is given by theYang-Mills-Higgs
action (4.1) of the underlying lattice gauge theory and in terms of the(U ,O)-variables we choose
as Lagrangian for the HMC-dynamics

L = −1
2∑

x,µ
tr

(

U̇x,µU
−1

x,µ
)2− 1

2 ∑
x

tr
(

ȮxO
−1
x

)2−SYMH [U ,O], (4.3)

where dot denotes the derivative with respect to the HMC timeparameterτ . The Lie algebra valued
fictitious momenta conjugated to the link variableUx,µ and site variableOx are given by

Px,µ =
∂L

∂
(

U̇x,µU
−1

x,µ
) = −U̇x,µU

−1
x,µ , Px =

∂L

∂
(

ȮxO
−1
x

) = −ȮxO
−1
x . (4.4)

The Legendre transform yields the following pseudo-Hamiltonian

H = −1
2 ∑

x,µ
trP2

x,µ − 1
2 ∑

x
trP2

x +SYMH [U ,O]. (4.5)

The equations of motion for the momenta are obtained by varying the Hamiltonian. The variation
of SYM [U ,O] with respect to a fixed link variableUx,µ yields the staple variableRx,µ , the sum

5
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of triple products of elementary link variables closing to aplaquette with the chosen link variable.
Setting

δPx,µ = Ṗx,µdτ , δUx,µ = U̇x,µdτ = −Px,µUx,µdτ (4.6)

with similar expressions for the momentum and field variables δPx andδOx in the Higgs sector,
one finds for the variation of the HMC-Hamiltonian

δH = −∑
x,µ

trPx,µ
{

Ṗx,µ −Fx,µ
}

−∑
x

trPx
{

Ṗx−Fx
}

(4.7)

with the following forces in the gauge- and Higgs sectors

Fx,µ =
β
14

(

Ux,µRx,µ −R†
x,µU

†
x,µ

)

+ κ(Ux,µφx)φT
x+µ , Fx = κφx

(

∑y:xUx,y φy

)T
, (4.8)

where the last sum extends over all nearest neighborsy of x andUxy denotes the parallel transporter
from y to x. The variational principle implies that the projection of the terms between curly brackets
in (4.7) onto the Lie algebrasg2 andso(7) vanish. Hence choosing a trace-orthonormal basis{Ta}
of g2 and{T̃b} of so(7) the LHMC-equations read

U̇x,µ = −Px,µUx,µ , Ṗx,µ = ∑
a

tr
(

Fx,µTa
)

Ta and

Ȯx = −PxOx , Ṗx = ∑
b

tr
(

FxT̃b
)

T̃b .
(4.9)

The involved exponential maps are given by relatively simple analytical expressions [6] and a large
step size (Leap frog second order integrator withδτ = 0.25, Nt = 3 in most of our simulations)
allows for a fast and efficient implementation of the algorithm.

4.2 Exponential error reduction for Wilson loops

In the confining phase the rectangular Wilson loop scales asW(L,T) ∝ exp(−σL ·T). In order
to estimate the string tensionσ we probe areasLT ranging from 0 up to 100 and thusW will
vary by approximately 40 orders of magnitude. A brute force approach where statistical errors
for the expectation value of Wilson or Polyakov loops decrease with the inverse square root of
the number of statistically independent configurations by just increasing the number of generated
configurations will miserably fail. Thus to obtain accurateand reliable numbers for the static
potential and to detect string breaking we implemented the multi-step Lüscher-Weisz algorithm
with exponential error reduction for the time transportersof the Wilson loops [9]. With this method
the absolute errors of Wilson lines decrease exponentiallywith the temporal extentT of the line.
This is achieved by subdividing the lattice intont sublatticesV1, . . . ,Vnt containing the Wilson loop
and separated by time slices plus the remaining sublattice,denoted byV̄, see Fig. 2 (left panel).
At the first level in a two-level algorithm the time extent of each sublatticeVn is 4 such thatnt is
the smallest natural number with 4nt ≥ T + 2. In Fig. 2 (left panel)T = 14 and the lattice is split
into four sublatticesV1,V2,V3,V4 containing the Wilson loop plus the complementV̄. The Wilson
loop is the product of parallel transportersW = T ′

2T ′
3T4T3T2T1. If a sublatticeVn contains only

one connected piece of the Wilson loop (asV1 andV4 do) then one needs to calculate the sublattice
expectation value

〈Tn〉n =
1
Zn

∫

sublattice n

DU Tne−S, (4.10)

6
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Figure 2: (Color online) Iterative slicing (from left to right) of lattice and Wilson loop during the multi-level
algorithm.

if Vn contains two connected pieces (asV2 andV3) then one needs to calculate〈Tn ⊗T ′
n 〉n. The

updates in each sublattice are done with fixed link variableson the time-slices bounding the sublat-
tice. Calculating the expectation value of the full Wilson loop reduces to averaging over the links
in thent +1 time slices,

〈W〉 =
〈

C

(

〈T1〉1〈T2⊗T
′

2 〉2 · · · 〈Tnt−1⊗T
′

nt−1〉nt−1〈Tnt〉nt

)〉

boundaries
. (4.11)

HereC is that particular contraction of indices that leads to the trace of the Wilson loop. In a
two-level algorithm each sublatticeVn is further divided into two sublatticesVn,1 andVn,2, see
Fig. 2 (middle panel), and the sublattice updates are done onthe small sublatticesVn,k with fixed
link variables on the time slices separating the sublattices Vn,k. This way one finds two levels of
nested averages. Iterating this procedure gives themulti-level algorithm. Since the dimensionsdR

grow rapidly with the Dynkin labels[p,q] – for example, below we shall verify Casimir scaling for
charges in the 189 dimensional representation[2,1] – it is difficult to store the many expectation
values of tensor products of parallel transporters. Thus weimplemented a slight modification of the
Lüscher-Weisz algorithm where the lattice is further splitby spatially slicing along a hyperplane
orthogonal to the plane defined by the Wilson loop, see Fig. 2 (right panel).

In the present work we use a two-level algorithm with time slices of length 4 on the first
and length 2 on the second level to calculate〈W〉 for Wilson loops (and hence transportersTn)
of varying sizes and in different representations and a three-level algorithm with times lices 8,4
and 2 for Polyakov loops. To avoid the storage of tensor products of large representations we
implemented the modified algorithm as explained above.

5. String tension and Casimir scaling inG2 gluodynamics

The static inter-quark potential is linearly rising on intermediate distances and the corresponding

7
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string tension will depend on the representation of the static charges. We expect to findCasimir
scalingwhere the string tensions for different representationsR andR ′ scale according to

σR

cR

=
σR′

cR′
(5.1)

with quadratic CasimircR . Although all string tensions will vanish at asymptotic scales it is still
possible to check for Casimir scaling at intermediate scales where the linearity of the inter-quark
potential is nearly fulfilled. Up to these scales we can parametrize the potential with

VR(R) = γR − αR

R
+ σRR. (5.2)

To extract the static quark anti-quark potential two different methods are available. The first
makes use of the behavior of rectangular Wilson loops in representationR for largeT,

〈WR(R,T)〉 = exp
(

κR(R)−VR(R)T
)

. (5.3)

The potential can be extracted from the ratio of two Wilson loops with different time extent accord-
ing to

VR(R) =
1
τ

ln
〈WR(R,T)〉

〈WR(R,T + τ)〉 . (5.4)

We calculated the expectation values of Wilson loops with the two-level Lüscher-Weisz algorithm
and fitted the right hand side of (5.4) with the potentialVR(R) in (5.2). The fitting has been done
for external charges separated by one lattice unit up to separationsRwith acceptable signal to noise
ratios. From the fits we extracted the constantsγR ,αR andσR entering the static potential. For an
easier comparison of the numerical results on lattices of different size and for different values ofβ
we subtracted the constant contribution to the potentials and plotted

ṼR(R) = VR(R)− γR (5.5)

in the figures. The statistical errors are determined with the Jackknife method. In addition we
determined thelocal string tension

σloc,R

(

R+
ρ
2

)

=
VR(R+ ρ)−VR(R)

ρ
, (5.6)

given by the Creutz ratio

σloc,R

(

R+
ρ
2

)

=
αR

R(R+ ρ)
+ σR =

1
τρ

ln
〈WR(R+ ρ ,T)〉 〈WR(R,T + τ)〉
〈WR(R+ ρ ,T + τ)〉〈WR(R,T)〉 . (5.7)

The second method to calculate the string tensions uses correlators of two Polyakov loops,

VR(R) = − 1
βT

ln〈PR(0)PR(R)〉 . (5.8)

The correlators are calculated with the three-level Lüscher-Weisz algorithm and are fitted with the
static potentialVR(R) with fit parametersγR ,αR andσR . Now the local string tension takes the
form

σloc,R

(

R+
ρ
2

)

= − 1
βTρ

ln
〈PR(0)PR(R+ ρ)〉
〈PR(0)PR(R)〉 . (5.9)

8
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ṼR/µ

µR

R = 7
R = 14
R = 27
R = 64
R = 77
R = 77′

R = 182
R = 189

Figure 3: (Color online)Left panel:Continuum scaling of the fundamental potential.Right panel:Unscaled
potential withβ = 40 on a 283 lattice for different representations.
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Figure 4: (Color online)Left panel: Scaled potential withβ = 40 on a 283 lattice. Right panel:Ratio of
the local string tension withβ = 40 scaled on a 283 lattice for the eight smallest representations.

5.1 Casimir scaling in 3 dimensions

Most LHMC simulations are performed on a 283 lattice with Wilson loops of time extentT = 12.
To extract the static potentials from the ratio of Wilson loops in (5.4) we choseτ = 2. To check for
scaling we plotted the potentials in ‘physical’ units,V/µ , with mass scale set by the string tension
in the 7 representation,

µ =
√

σ7, (5.10)

as function ofµR in Fig. 3 (Left panel). We observe that the potentials for thethree values ofβ are
the same within error bars. In addition they agree with the potential (in physical units) extracted
from the Polyakov loop on a much larger 483 lattice.

In Fig. 3 (Right panel) we plotted the values for the eight potentialsV7, . . . ,V189 (with statistical
errors) measured in ‘physical units’µ defined in (5.10). The distance of the charges is measured in
the same system of units. The linear rise at intermediate scales is clearly visible, even for charges
in the 189 dimensional representation.
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Fig. 4 (Left panel) contains the same data points rescaled with the quadratic Casimirs of the
corresponding representations. The eight rescaled potentials fall on top of each other within error
bars. This implies that thefull potentialsfor short and intermediate separations of the static charges
show Casimir scaling.

To further check for Casimir scaling we calculated thelocal string tensionswith ρ = 1 for all
R between 1 and 10. The horizontal lines in Fig. 4 (Right panel)are the values predicted by the
Casimir scaling hypothesis. Clearly we see no sign of Casimir scaling violation on a 283 lattice
near the continuum atβ = 40. Of course, for widely separated charges in higher dimensional repre-
sentations the error bars are not negligible even for an algorithm with exponential error reduction.

5.2 String breaking and glue-lumps in 3 dimensions

To observe the breaking of strings connecting static charges at intermediate scales when one further
increases the separation of the charges we performed high statistics LHMC simulations on a 483

lattice with β = 30. We calculated expectation values of Wilson loops and products of Polyakov
loops for charges in the two fundamental representations ofG2. When a string breaks then each
static charge in the representationR at the end of the string is screened byN(R) gluons to form
a color blind glue-lump. We expect that the dominant decay channel for an over-stretched string
is string→ gluelump+ gluelump. For a string to decay the energy stored in the string must be
sufficient to produce two glue-lumps. According to (3.2) it requires at least 3 gluons to screen a
static charge in the 7 representation, one gluon to screen a charge in the 14 representation and two
gluons to screen a charge in the 27 representation. We shall calculate the separations of the charges
where string breaking sets in and the masses of the produced glue-lumps. The mass of such a
quark-gluon bound state can be obtained from the correlation function according to

exp(−mRT) ∝ CR(T) =

〈

(N(R)
⊗

n=1

Fµν(y)

)
∣

∣

∣

∣

R,a
R(Uyx)ab

(N(R)
⊗

n=1

Fµν(x)

)
∣

∣

∣

∣

R,b

〉

, (5.11)

whereR(Uyx) is the temporal parallel transporter in the representationR from x to y of lengthT.
It represents the static sources in the representationR. The vertical line means projection of the
tensor product onto that linear subspace on which the irreducible representationR acts,

(14⊗14⊗·· ·⊗14) = R⊕·· · . (5.12)

For example, for charges in the 14 representation the projection is simply

Fµν(x)
∣

∣

∣

14,a
= Fa

µν(x), where Fa
µνTa = Fµν . (5.13)

For charges in the 7 representation we must project the reducible representation 14⊗14⊗14 onto
the irreducible representation 7. Using the embedding ofG2 into SO(7) representations one shows
that this projection can be done with the help of the totally antisymmetricε-tensor with 7 indices,

Fµν(x)⊗Fµν(x)⊗Fµν(x)
∣

∣

∣

7,a
∝ F p

µν(x)Fq
µν(x)F r

µν(x)εabcde f gT
p

bcT
q

deT
r
f g. (5.14)

Fig. 5 (Left panel) shows the logarithm of the glue-lump correlator (5.11) as function of the sepa-
ration of the two lumps for static charges in the fundamentalrepresentations 7 and 14. The linear
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Figure 5: (Color online)Left panel:Glue-lump correlator (lattice size 483, β = 30). Right panel:Potential
for both fundamental representations atβ = 30 and corresponding glue-lump mass
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Figure 6: (Color online)Left panel:Local string tension (483 lattice,β = 30). Right panel:Casimir scaling
of local string tension (483 lattice,β = 30).

fits to the data yield the glue-lump masses

m7a = 0.46(4), m14a = 0.761(3). (5.15)

Thus we expect that the subtracted static potentials approach the asymptotic values

ṼR −→ 2mR − γR . (5.16)

With the fit-valuesγ7a = 0.197(1) andγ14a = 0.381(2) we find

Ṽ7/µ −→ 3.47 , Ṽ14/µ −→ 5.47. (5.17)

Fig. 5 (Right panel) shows the rescaled potentials for charges in the fundamental representations
together with the asymptotic values (5.17) extracted from the glue-lump correlators. At fixed cou-
pling β = 30 both potentials flatten exactly at separations of the charges where the energy stored
in the flux tube is twice the glue-lump energy.
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Fig. 6 shows the local string tensions in the two fundamentalrepresentations and their ratio.
Although more gluons (three instead of one) are involved we see clearly that the string connecting
charges in the adjoint representation breaks earlier than the string connecting charges in the defining
representation.

6. 4-dimensional Gauge-Higgs model

The lattice action (4.1) depends on the inverse gauge coupling β and the hopping parameter
κ which is proportional to the vacuum expectation value of theHiggs field. Forβ → ∞ the gauge
bosons decouple and the theory reduces to anSO(7)-invariant nonlinearσ -model which shows
spontaneous symmetry breaking down toSO(6) at some critical valueκc. The phase transition is
of second order.

For κ → ∞ the factorS in the decomposition (2.2) is frozen and we end up with anSU(3)

gauge theory for the factorU which shows a weak first order deconfinment transition. With respect
to the unbroken subgroupSU(3) the fundamental representations(7) and (14) branch into the
following irreducibleSU(3)-representations:

(7) −→ (3)⊕ (3̄)⊕ (1)

(14) −→ (8)⊕ (3)⊕ (3̄). (6.1)

The Higgs field branches into a scalar quark, scalar anti-quark and singlet with respect toSU(3).
Similarly, a G2-gluon branches into a masslessSU(3)-gluon and additional gauge bosons with
respect toSU(3). The latter eat up the the non-singlet scalar fields such thatthe spectrum in
the broken phase consists of 8 massless gluons, 6 massive gauge bosons and one massive Higgs
particle. If κ is lowered, in addition to the 8 gluons ofSU(3), the 6 additional gauge bosons of
G2 with decreasing mass begin to participate in the dynamics. Similarly as dynamical quarks and
anit-quarks in QCD, they transform in the representations(3) and(3̄) of SU(3) and thus explicitly
break theZ3 center symmetry. As inQCD they are expected to weaken the deconfinement phase
transition. Thus it has been conjectured in [3] that there may exist a critical endpoint where the
deconfinement transition disappears. Forκ = 0 we recoverG2 gluodynamics with a first order
deconfinement phase transition.

We measure the Polyakov loop as an (approximate) order parameter for confinement and in-
vestigate the corresponding critical curve in theβ -κ plane. For largeκ the confinement phase
in SU(3) is characterised by〈χ7〉 = 1. If in the deconfinement phase theZ3 centre symmetry
of the remainingSU(3) is broken then the ambiguity of measuring〈χ7〉 is fixed by choosing the
Polyakov loop that points into the1-direction ofSU(3). Technically this is achieved by taking
〈χ7〉 → 3− 2〈χ7〉. The results are shown in Fig. 7 (Left panel). We observe thaton the small
lattice the Polyakov loop jumps along a continuous line connecting the deconfinement transitions
of pureG2 and pureSU(3) gluodynamics. This points to a continuous line of deconfinement tran-
sitions all the way fromκ = 0 to κ = ∞. To see whether this is indeed the case we performed
high-precision simulations on larger lattices. A careful analyses of histograms and suszeptibilies
for Polyakov loops and the Higgs part of the action confirm theresults on the small lattice. Unfor-
tunately a rather small region in parameter space is left where we cannot resolve the order of the
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Figure 7: Left panel:Phase diagram of the Gauge-Higgs model in terms of the Polyakov loop expectation
value〈χ7〉 on a 123×2 lattice. Right panel:Phase diagram of the Gauge-Higgs model on a lattice with 6
links in temporal direction (mainly computed on a 163×6 lattice). Note the different scales in the separate
regions of the diagram. First and second order (or crossover) transitions are marked with a continuous and
dashed line (to guide the eye), respectively.

transition. In this small region there could exist a crossover from the confining to the deconfining
phase.

On a larger (163 × 6) lattice we calculate also the full phase diagram including the Higgs
SO(7) → SO(6) transition (Fig. 7, Right panel). Phase transitions are obtained by observing
susceptibility peaks in the Polyakov loop and the Higgs partof the action. We also investi-
gate the order of the confinement-deconfinement transition using the histogram method for the
Polyakov loops. For the order of the Higgs transition line weconsider the finite size scaling of
∂ n

κ 〈V−1∑x,µ Φx+µ̂Ux,µΦx〉 (n = 1,2) for lattices up to 203 × 6. With the data obtained so far the
point where the second orderSO(7) → SO(6) transition may turn into a crossover cannot be de-
termined reliably. If the triple point exists then an extrapolation to the point where the confining
phase meets both deconfining phases leads to the couplingsβtrip = 9.62(1) andκtrip = 1.455(5).

7. Conclusions

In the present work we implemented an efficient and fast LHMC algorithm to simulateG2 gauge
theory in three and four dimensions. In addition we implemented a slightly modified Lüscher-
Weisz multi-step algorithm with exponential error reduction to measure the static potentials for
charges in variousG2 representations. The accurate results in 3 dimensions showthat the static
potentials show Casimir scaling on intermediate scales within a few percent statistical errors. Thus
we conclude that in 3 dimensionalG2 gluodynamics the Casimir scaling violations of the string
tensions are small for all charges in the representations with dimensions 7,14,27,64,77,77′ ,182
and 189.

For larger separations we detect string breaking in the two fundamental representations exactly
at the expected scale where the energy stored in the flux tube is sufficient to create two glue-lumps.
To confirm this expectation we calculated masses of glue-lumps associated with static charges in
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the fundamental representations. Here, close to the stringbreaking distance, systematic Casimir
scaling violations show up (for a more detailed discussion see [6]).

In 4 dimensions we explored the full phase diagram of theG2 Gauge Higgs model. We found a
line of first order phase transitions connectingG2 andSU(3) gluodynamics and a line of second or-
der phase transitions separating theG2 deconfinement phase from theSU(3) deconfinement phase.
Unfortunately we cannot exclude the existance of a small crossover region near the would-be tripel
point of the system. Details on theG2 Gauge Higgs model will be published in a follow up paper.
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