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We investigate which momentum components of gluons induce color confinement and sponta-

neous chiral symmetry breaking in lattice QCD. For this purpose, we formulate a lattice frame-

work to introduce the momentum cutoff of the gluon field. Using this framework, we calculate the

quark-antiquark potential, the color flux tube, the chiral condensate, and the Dirac spectrum. Our

results suggest that confinement and chiral symmetry breaking are induced by somehow different

momentum components of gluons.
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1. Introduction

The strong interaction is mediated by gluons. The interaction strength of gluons, i.e., the QCD
running coupling constant, depends on the energy scale. For this reason, the behaviors of QCD
phenomena are different in the different energy scales. The analysis for the role of momentum
components of gluons is important for understanding the mechanism of QCD phenomena.

In this study, our goal is to reveal which momentum components of gluons induce each QCD
phenomenon. In particular, we focus on two of the most significant properties of QCD, color con-
finement and spontaneous chiral symmetry breaking. The connection between confinement and
chiral symmetry breaking is often discussed in QCD. In some effective theories, the energy scales
of these two phenomena are different at zero temperature [1]. On the other hand, deconfinement
and chiral symmetry restoring phase transitions occur at the same temperature [2]. We nonper-
turbatively explore this connection in the viewpoint of the gluon momentum. We calculate the
quark-antiquark potential [3, 4], the color flux tube [5], the chiral condensate [6], and the Dirac
spectrum [7] in the quenched lattice QCD simulations at zero temperature.

In general, since the gauge transformation is nonlocal in momentum space, the momentum
component of the gluon field is not gauge invariant. We must fix the gauge in the numerical
simulation, and its result would depend on the adopted gauge choice. Nevertheless, this kind of
analysis enables us to intuitively understand the roles of gluons for QCD phenomena. In this paper,
we show the numerical results in the Landau gauge.

2. Momentum cutoff

We introduce the lattice framework to remove some momentum components of the gluon field
[3]. The framework is formulated as the following five steps.

Step 1. The SU(3) link variableUµ(x) is generated by Monte Carlo simulation. The link
variable is fixed with a certain gauge.

Step 2. The momentum-space link variablẽUµ(p) is obtained by the Fourier transformation,
as

Ũµ(p) =
1
V ∑

x
Uµ(x)exp(i ∑

ν
pνxν), (2.1)

whereV is the lattice volume.

Step 3. Some components of̃Uµ(p) are removed by a momentum cutoff. In the cutoff region,
the momentum component is replaced by the free link variable

Ũ free
µ (p) =

1
V ∑

x
1·exp(i∑ν pνxν) = δp0. (2.2)

For example, the ultraviolet (UV) cutoffΛUV is

ŨΛ
µ (p) =

{
Ũµ(p) (

√
p2 ≤ ΛUV)

0 (
√

p2 > ΛUV),
(2.3)
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Figure 1: The schematic figure of the UV cutoffΛUV and the IR cutoffΛIR.

and the infrared (IR) cutoffΛIR is

ŨΛ
µ (p) =

{
δp0 (

√
p2 < ΛIR)

Ũµ(p) (
√

p2 ≥ ΛIR).
(2.4)

The schematic figure is depicted in Fig.1.
Step 4. The coordinate-space link variable is obtained by the inverse Fourier transformation as

U ′
µ(x) = ∑

p
ŨΛ

µ (p)exp(−i ∑
ν

pνxν). (2.5)

SinceU ′
µ(x) is not an SU(3) matrix in general,U ′

µ(x) must be projected onto an SU(3) element
UΛ

µ (x). The projection is realized by maximizing the quantity

ReTr[{UΛ
µ (x)}†U ′

µ(x)]. (2.6)

Step 5. The expectation value of an operatorO is computed by using this link variableUΛ
µ (x)

instead ofUµ(x), i.e.,〈O[UΛ]〉 instead of〈O[U ]〉.
Using this framework, we analyze how the physical quantity is changed by the momentum

cutoff at fixed gauge. From the resultant change, we can nonperturbatively investigate the relation
between the physical quantity and the momentum components of gluons. We expect that this
framework is broadly applicable to the analysis of QCD phenomena.

3. Color confinement

First, we apply this framework to the static quark-antiquark potential [4]. The quark-antiquark
potential is expressed asV(R) = σR−A/R+C with the interquark distanceR. In short range, it is
dominated by the perturbative Coulomb potential. In long range, it is dominated by the nonpertur-
bative linear confinement potential.

We show the quark-antiquark potential with the momentum cutoff in Fig.2. When the high-
momentum component is removed by the UV cutoff, the Coulomb potential disappears and the
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Figure 2: The quark-antiquark potentialV(R) with the UV cutoffΛUV (left) and the IR cutoffΛIR (right).
The broken curve is the original quark-antiquark potential.
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Figure 3: The string tensionσ with the UV cutoffΛUV (left) and the IR cutoffΛIR (right). The results with
different lattice spacingsa are shown.

quark-antiquark potential becomes a linear potential. When the low-momentum component is
removed by the IR cutoff, the linear confinement potential disappears, and the quark-antiquark
potential becomes the perturbative Coulomb potential.

For a more quantitative argument, we estimate the string tensionσ by fitting the potential with
a linear functionσR+const. in 0.3 fm< R< 0.9 fm. The results with different lattice spacings are
summarized in Fig.3. The original value ofσ is about 0.89 GeV/fm. Both in the cases of UV and
IR cutoffs, the string tension is drastically changed in the low-momentum region below about 1.5
GeV. On the other hand, the string tension is almost unchanged in the high-momentum region above
about 1.5 GeV. Therefore, we conclude that color confinement is induced by the low-momentum
gluon below about 1.5 GeV.

Based on this conclusion, we analyze the color flux tube [5]. In hadrons, gluons form the
color flux tube between the confined quarks. The formation of the color flux tube is believed to be
essential for color confinement. In lattice QCD, one can observe the color flux tube by calculating
the spatial action density distribution around the Wilson loop [8, 9, 10, 11, 12]. The resultant action
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Figure 4: The action density distribution around a static quark-antiquark pair. The interquark distance is
R= 0.6 fm. “×5” means that the action density is enlarged by a factor of five compared to other data.

density distribution is shown in Fig.4 (No Cut). Note that the statistical fluctuation is rather large.
There are two singular peaks which correspond to quark self energies. The color flux tube exists
between these two peaks, which is, however, too small compared to perturbative contributions.

Since color confinement is induced only by the low-momentum gluon below about 1.5 GeV,
we can expect that the color flux tube is extracted by removing the high-momentum gluon above
1.5 GeV. Here, for a technical reason, we use the three-momentum cutoff, which gives almost
the same behavior as the four-momentum cutoff [5]. In Fig. 4, we display the action density
distribution with the UV cutoff. When the high-momentum gluon is removed, the perturbative
self-energy peaks are strongly suppressed. In addition, as a by-product, the statistical fluctuation is
also strongly suppressed. The action density distribution withΛUV = 1.5 GeV purely corresponds
to the color flux tube.

4. Spontaneous chiral symmetry breaking

Next, we analyze spontaneous chiral symmetry breaking. Although chiral symmetry is, of
course, a symmetry of the quark field, spontaneous chiral symmetry breaking is induced by the
nonperturbative gluon dynamics.

An order parameter of spontaneous chiral symmetry breaking is the chiral condensate〈q̄q〉 in
the chiral limit. In Fig.5, we showΣ = |〈q̄q〉| with the IR cutoff in quenched lattice QCD [6]. In
this calculation, we use the staggered fermion with the massma= 0.01, where the corresponding
pion mass is about 500 MeV. AroundΛIR = 0, the chiral condensate suddenly gets small. This jump
aroundΛIR = 0 is caused by removing the zero-momentum link variableŨµ(0). This suggests that
the zero-momentum link variable, which is the deep-infrared gluon in the continuum, has a large
contribution to the chiral condensate. InΛIR > 0, the chiral condensate gradually decreases. Even
in ΛIR > 1.5 GeV, the chiral condensate continues to decrease. Also in the case of other quark
masses and in the extrapolated chiral limit, the qualitative behavior is similar.
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Figure 5: The chiral condensateΣ = |〈q̄q〉| with the IR cutoffΛIR (left). The probability distribution of the
smallest Dirac eigenvalueλmin (right). The solid curve is the prediction of chiral random matrix theory.

In this quenched calculation, the chiral condensate is induced by the broad momentum region.
This is different from the case of color confinement. This fact suggests that color confinement
and spontaneous chiral symmetry breaking is induced by the different momentum components of
gluons. For more conclusive statement, we have to take into account many systematics, especially,
the dynamical quark effects in the case of realistic QCD.

The chiral condensate is related to the Dirac spectrum through the Banks-Casher relation [13].
Thus, the gradual change of the chiral condensate is considered to originate from the nonlinear
relation between the Dirac eigenvalue and the gluon momentum. This relation can be directly
analyzed by calculating the Dirac spectrum [7].

Another interesting property of the low-lying Dirac spectrum is that it is described by chiral
random matrix theory [14, 15, 16]. Chiral random matrix theory describes the universal behavior
of disordered systems. In Fig.5, we show the smallest eigenvalue distributionP(λmin) in the trivial
topological sector. The histograms are the lattice data of the improved staggered Dirac operator.
The solid curve is the prediction of chiral random matrix theory,P(λmin) = zmin/2 ·exp(−z2

min/4)
with zmin = λminΣV [17]. In the original lattice QCD (No Cut), the lattice data is well reproduced
by chiral random matrix theory. InΛIR = 2 GeV, the lattice data deviates from the prediction of
chiral random matrix theory. Therefore, the low-momentum gluon induces the strong-interacting
and disordered nature which is necessary for the validity of chiral random matrix theory.
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