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ble of 305 configurations. We use HYP-smeared improved staggered valence quarks. The analysis
is done using fitting forms based on both SU(2) and SU(3) staggered chiral perturbation thery. For
the SU(2) analysis, we find that the result using the NLO fit function is consistent with that from
a partial NNLO fit. For the SU(3) analysis, where we have to use partially constrained fits due to
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companion proceedings to improve the control over the continuum extrapolation.
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BK on the ultrafine ensemble Taegil Bae

1. Introduction

This paper is the last of four proceedings [1, 2, 3] describing our calculation of BK using im-
proved staggered fermions. Here, we present our first results using the MILC “ultrafine” ensemble,
with a = 0.045 fm. This is the finest of four lattice spacings that we have used, the others being the
“coarse” (a = 0.12 fm), “fine” (a = 0.09 fm) and “superfine” (a = 0.06 fm) spacings. Our previous
result for BK was based on these three spacings [4]. Having a fourth point closer to the continuum
limit both checks our previous continuum extrapolation and reduces the error in that extrapolation.

The parameters for the numerical study are collected in Table 1. As can be seen, we have so
far obtained results on only 305 configurations, less than half of the total available. Hence, the
results are preliminary.

parameter value
sea quarks asqtad staggered fermions

valence quarks HYP-smeared staggered fermions
geometry 643×192

number of confs. 305
aml/ams 0.0028/0.014

1/a 4517 MeV
αs 0.2096 for µ = 1/a

amx, amy 0.0014×n (n = 1,2,3, . . . ,10)

Table 1: Parameters for the numerical study on the ultrafine (U1) ensemble. ml is the light sea quark mass,
ms the strange sea quark mass, mx the light valence quark mass, and my the strange valence quark mass.

2. Extracting BK

We calculate BK using the methods described in Ref. [4]. We place the U(1) noise wall-sources
at t = 0 and t = 80. These sources couple only to the Goldstone-taste pion (ξ5). In Fig. 1, we show
an example of our results for the ratio of matrix elements which equals BK when the operator
(placed at time T ) is far from both sources. We choose the fitting range such that the excited states
with the same quantum numbers as the Goldstone pion mode do not make significant contributions,
as determined from wall-source to current correlators. In this case, we choose the fitting range to
be 25≤ t ≤ 54, and fit to a constant, as in the example shown in Fig. 1.

3. SU(2) SChPT analysis

Our most reliable method of extrapolating BK to the physical quark masses is based on SU(2)
staggered chiral perturbation theory (SChPT). The resulting fit forms and a detailed description of
our fitting method are given in Ref. [4]. In brief, the fits are done in two steps.

1. In the “X-fit” we extrapolate mx → mphys
d , with my fixed, while at the same time using the

SChPT fit form to remove taste-breaking lattice artifacts, and to set m`→ mphys
` in the chiral
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Figure 1: BK versus T on the ultrafine ensemble, obtained using one-loop matching with renormalization
scale µ = 1/a. Valence masses are amx = amy = 0.007, corresponding to a kaon with approximately the
physical mass.

logarithms. The fit function takes the form [4]

fth = d0F0 +d1
XP

Λ2
χ

+d2
X2

P

Λ4
χ

, (3.1)

where XP is the mass of the pion composed of valence quarks of mass mx, and F0 = 1 +
chiral logs. The chiral logarithms have a known form in terms of measurable pion masses.
The coefficient d2 multiplies an analytic next-to-next-to-leading order (NNLO) term. The
coefficients d0−d2 are expected to have O(1) magnitudes.

2. In the “Y-fit”, we extrapolate the results of the X-fits to my = mphys
s , using an analytic fit

function. A linear Y-fit appears sufficient, and we use this for our central value.

In Fig. 2, we show an example of both X- and Y-fits. We use our lightest four values of mx in the
X-fits and our heaviest three values of my in the Y-fits. Furthermore, the fit function for the X-fit
is of NLO. Thus the fit is labeled 4X3Y-NLO. The corresponding plots for NNLO X-fits, in which
we add a single analytic NNLO term [4], are shown in Fig. 3. Illustrative parameters from these fits
are collected in Table 2. Note that, since we use an uncorrelated χ2/d.o.f, we expect values much
smaller than unity if the fit is good.

We can see from the figures and the Table that the difference between values for BK resulting
from these fits is very small. We also see that, although d0 is well determined, d1 and d2 are not.
The poor determination of d1 and d2 has, however, little impact on our extrapolated value.

3



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
2
9
6

BK on the ultrafine ensemble Taegil Bae

Figure 2: BK versus XP (mass of the pion composed of valence quarks of mass mx) and corresponding
4X-NLO fit (left panel) and BK versus YP (mass of pion composed of quarks of mass my) along with the 3Y
linear fit (right panel). BK(µ = 1/a) is obtained using one-loop matching. In the left panel, amy = 0.014,
and the red point is the result of setting mx = mphys

d , m` = mphys
` and removing taste breaking.

Figure 3: As for Fig. 2, but using NNLO X-fits.

fit d0 d1 d2 χ2/d.o.f BK(µ = 1/a)
4X3Y-NLO 0.4702(73) 0.155(40) — 0.017(66) 0.4951(68)

4X3Y-NNLO 0.4973(126) 0.22(17) −0.26(57) 0.0012(99) 0.4938(98)

Table 2: X-fit parameters for the 4X-NLO and 4X-NNLO fits shown in the left panels of Figs. 2 and 3, and
results for BK after the Y-fits shown in the right panels.
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Figure 4: One-loop matched BK versus XP on the U1 lattice for the D-B1 fit (left) and for the N-BB1 fit
(right). The fits are described in the text and, in more detail, in Ref. [4]. The blue octagon in the right-hand
plot shows the result after extrapolation to physical quark masses and after removing lattice artifacts.

An important feature of the fitting function is the presence of chiral logarithms, which lead
to the curvature for small XP. While our data is consistent with this curvature, it is very small in
the region of our points, and our data itself provides no direct evidence for the presence of chiral
logarithms.

Finally, we note that the convergence of SU(2) ChPT is satisfactory for all points included in
the fits. This can be seen, for example, by the closeness of d0 to the values of BK to which we fit.

4. SU(3) Analysis

The SU(3) fits have the advantage of using all our data points (55 mass pairs), but two disad-
vantages. These are that the convergence of SU(3) ChPT is questionable for many of our points,
and that the NLO SU(3) SChPT fit forms are much more involved. We sketch the situation here,
and refer to Ref. [4] for details.

Compared to the SU(2) fits, we have to make two simplifications in order to obtain stable
fits. First, we need to lump together classes of fit functions which have similar functional forms,
using only one function as representative. Second, we need to use constrained (Bayesian) fitting—
parameters associated with taste-breaking are constrained to lie in the range of values expected
from SChPT power counting. With these simplifications we were able to obtain good fits on the
coarse, fine and superfine ensembles [4]. We found, however, that different assumptions about
the constraints led to significant variation in the final answer for BK , and this gave rise to a large
systematic error. The particular value for this error quoted in [4], which was 5.3%, came from the
analysis on the coarse ensemble C3. Thus it is interesting to see whether the variation between fits
is reduced on the ultrafine lattices. We would expect significant reduction because the offending
terms in the fit functions are proportional to either a2 or αs(1/a)2.
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Figure 5: As for Fig. 4, except using D-B2 (left) and N-BB2 (right) fits.

In Fig. 4, we show the results of two fits. That shown on the left is a “D-B1” fit, in which
we use only degenerate kaons, and constrain the representative lattice artifact term based on the
assumption that it is proportional to a2. The fit in the right panel is a “D-BB1” fit to the entire
data set, with two Bayesian constraints. The first constraint is that the results (including errors) of
the D-B1 fit are used to constrain the parameters that contribute for degenerate kaons. The second
is that additional representative lattice artifact terms are constrained based on the assumption that
they are proportional to a2.

In Fig. 5, we show the BK results of two different fits: D-B2 on the left and N-BB2 on the right.
These differ from D-B1 and N-BB1 in that lattice artifact terms are presumed to be proportional
to α2

s rather than a2. The results for BK(1/a), after removal of taste-breaking from the chiral
logarithms, and after extrapolation to physical quark masses, are given in Table 3.

fit type χ2/d.o.f BK(µ = 1/a)
N-BB1 0.075(81) 0.5067(55)
N-BB2 0.052(38) 0.5127(76)

Table 3: Results for BK and fit quality from N-BB1 and N-BB2 fits on the U1 ensemble.

We see that the difference between N-BB1 and N-BB2 fits has been reduced to 1.2%, compared
to the 5.3% found on the C3 ensemble. We interpret this improvement as being due to the reduction
in the size of taste-breaking effects. As Table 4 shows, if these effects are dominantly discretization
errors, the expected reduction in their size is ∼ 7.5, while if they are dominantly truncation errors
the reduction is ∼ 2.5. Thus, as far as the need for Bayesian constraints goes, the move to smaller
lattice spacings improves the stability of the SU(3) fitting. The only caveat to this statement is that
a similar reduction is not observed on the S1 ensemble [4].
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parameter C3 U1
a2 (fm2) 0.0141 0.0019

α2
s (µ = 1/a) 0.1080 0.0439

Table 4: a2 and α2
s for the C3 and U1 lattices.

5. Conclusion

As one can see from Tables 2 and 3, the results from the SU(2) fits lie below those from
the SU(3) fits. This difference is not, however, statistically significant. For example, using our
preferred 4X3Y-NNLO and N-BB1 fits, the difference is only 1.2σ . Although the error on the
SU(3) N-BB1 fit is nominally smaller than that on the SU(2) 4X3Y-NNLO fit, we think that the
latter fit is more reliable, as discussed above and in Ref. [4].

Although our results use somewhat less than half of the 883 ultrafine configurations that we
intend to analyze, we can already see that fitting simplifies as we approach the continuum limit,
and systematic errors are correspondingly reduced. This is particularly true of the SU(3) fitting.
However, one should keep in mind that one does not expect the chiral convergence of SU(3) fitting
to improve on finer lattices.

The data presented here is incorporated into continuum extrapolations in two of the companion
proceedings [1, 2].
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