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We present our strategy and some preliminary results for the renormalization of four-quark op-
erators relevant for kaon physics. We follow the non-perturbative Rome-Southampton method,
with both exceptional and non-exceptional kinematics. We also implement momentum sources
and twisted boundary conditions. We use an (almost) unitary setup: Domain-Wall valence on
n f = 2+1 Domain-Wall sea and Iwasaki gauge action, at two values of the lattice spacing corres-
ponding to approximately 0.086 fm and 0.114 fm . The chiral properties of these fermions play a
crucial role in this compuation and are studied in detail in this work.
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1. Introduction

Kaon physics has been extensively studied though lattice simulation for more than thirty years,
and thanks to the recent algorithms and hardware developments one can now achieve the precision
required to constraint the standard model and hopefully reveal the effect of new physics. Recently,
BK , the quantity which parametrizes neutral kaon mixing in the standard model has been computed
with an accuracy of a few percents [1]. Nevertheless, other kaon matrix elements are still poorly
determined although they can have a great impact in the search for new physics or imply strong con-
straints on beyond the standard model (BSM) theories. For example, the non-perturbative contribu-
tions to neutral kaon mixing beyond the standard model have been computed only in the quenched
approximation [2, 3], although computation with dynamical fermions are currently underway and
some preliminary studies have been already presented [4, 5]. Probably even more importantly, a
complete computation of K → ππ decays with dynamical quarks is still missing. Because the ex-
perimental parameters of CP violations are very well measured (|ε|= (2.228±0.011)×10−3 and
Re(ε ′/ε) = (1.65± 0.26)× 10−3 [6]), a precise and realistic computation of the relevant matrix
elements would provide important constraints on the CKM matrix. One of the difficulties for the
lattice implementation comes from the two-body final state. In the past this problem was usually
circumvent by invoking the soft pion theorem to relate the two-pion state to a one-pion state. But,
as it has been shown in [7], this approach is not reliable for a precise computation, mainly because
of the poor convergence of chiral perturbation theory at masses around those of the kaon. A very
important step forward has been made when it was realized how the energy shift of a two-particle
state can be computed on the lattice [8]. The RBC-UKQCD collaborations have started the com-
putation of this decay along this line, and the first results for the matrix element of the ∆I = 3/2
operators have been presented at this conference [9]. An alternative method has been recently pre-
sented in [10]. In this proceeding we present our strategy and some preliminary results for the
renormalization of some of the relevant four-quark operators. It has become traditional to use a
non-perturbative renormalization scheme like the Schrödinger functional or the RI-MOM scheme.
Here we use a modified version of the latter, following what was done recently for BK [1], but
generalized to other four-quark operators. In the next section we explain what are the operators we
consider in this work. In the third section, we give more details about the numerical techniques,
and preliminary results are presented in the fourth section.

2. General Framework

2.1 Kaon decay

In the standard model at an energy scale below the charm quark mass, the dominant non
perturbative contributions to the effective ∆s = 1, ∆d = −1 Hamiltonian can be described by a
linear combination of ten four-quark operators: two current-current, four QCD penguins, and four
electroweak penguins. Among these 10 operators, only seven are actually independent and it is
useful to classify them according to their chiral and ispospin properties. Hence one notices that
they fall into three different representations of SU(3)L×SU(3)R which are (27,1), (8,1) and (8,8),
and they can contribute to two ispospin channels ∆I = 3/2 and ∆I = 1/2 (see for example [11, 12]).
We will use the seven-operator renormalization basis defined in [12], in which the operators have
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Figure 1: Example of eye diagram which contribute to K → ππ decay in the ∆I = 1/2 channel.

the following properties:

Operator SU(3)L×SU(3)R ∆I
Q′

1 (27,1) 1/2, 3/2
Q′

2,Q
′
3,Q

′
5,Q

′
6 (8,1) 1/2

Q′
7,Q

′
8 (8,8) 1/2, 3/2

(2.1)

If chiral symmetry was exact, the operators of different chirality would not mix under renormali-
zation, and in the basis described above the renormalization matrix would take the block diagonal
form:

Z∆s=1 =



Z∆s=1
11

Z∆s=1
22 Z∆s=1

23 Z∆s=1
25 Z∆s=1

26
Z∆s=1

32 Z∆s=1
33 Z∆s=1

35 Z∆s=1
36

Z∆s=1
52 Z∆s=1

53 Z∆s=1
55 Z∆s=1

56
Z∆s=1

62 Z∆s=1
63 Z∆s=1

65 Z∆s=1
66

Z∆s=1
77 Z∆s=1

78
Z∆s=1

87 Z∆s=1
88


. (2.2)

Furthermore, since ispospin is an exact symmetry in the chiral limit, for the (27,1) and (8,8) opera-
tors, it is enough to consider only the ∆I = 3/2 parts. This is numerically advantageous because the
“eye diagram” (see fig. 1) which are difficult to compute can only contribute to ∆I = 1/2 processes.

3. Neutral kaon mixing

In the standard model, neutral kaon mixing is dominated by box diagrams like the one shown
in figure 2. The non-perturbative contributions are given by 〈K0|O∆s=2

VV+AA|K0〉, where O∆s=2
VV+AA is

the parity conserving part of (sγL
µd)(sγL

µd). Beyond the standard model, other operators contribute
and they are usually given in the so-called SUSY basis

O∆s=2
1 = (sαγµ(1− γ5)dα)(sβ γµ(1− γ5)dβ ) , (3.1)

O∆s=2
2 = (sα(1− γ5)dα)(sβ (1− γ5)dβ ) , (3.2)

O∆s=2
3 = (sα(1− γ5)dβ )(sβ (1− γ5)dα) , (3.3)

O∆s=2
4 = (sα(1− γ5)dα)(sβ (1+ γ5)dβ ) , (3.4)

O∆s=2
5 = (sα(1− γ5)dβ )(sβ (1+ γ5)dα) . (3.5)
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Figure 2: Example of box diagram contributing to K−K mixing in the Standard model.

In this basis O∆s=2
1 is the standard model operator and O∆s=2

i , i > 1 are the BSM ones. In the SU(3)
flavor limit, It is straightforward to relate O∆s=2

4 and O∆s=2
5 to the ∆I = 3/2 components of the

electroweak penguins Q′
7 and Q′

8, which transform under (8,8). As one can find out from their
flavor structures, the remaining operators O∆s=2

2 and O∆s=2
3 transform under (6,6) 1. Thus, if chiral

symmetry is respected, O∆s=2
1 renormalizes multiplicatively, O∆s=2

2 and O∆s=2
3 mix together, and so

do O∆s=2
4 and O∆s=2

5 . To simplify the numerical implementation we work in the following basis:

Q∆s=2
1 = (sαγµdα)(sβ γµdβ )+(sαγµγ5dα)(sβ γµγ5dβ ) , (3.6)

Q∆s=2
2 = (sαγµdα)(sβ γµdβ )− (sαγµγ5dα)(sβ γµγ5dβ ) , (3.7)

Q∆s=2
3 = (sαdα)(sβ dβ )− (sαγ5dα)(sβ γ5dβ ) , (3.8)

Q∆s=2
4 = (sαdα)(sβ dβ )+(sαγ5dα)(sβ γ5dβ ) , (3.9)

Q∆s=2
5 = (sασµνdβ )(sασµνdβ ) , σµν =

1
2
[γµ ,γν ] . (3.10)

The parity conserving part (denoted by a superscript “+” ) of the operators (3.1)-(3.5) can be written
in terms of the operators (3.6)-(3.10)

(27,1)
[
O∆s=2

1
]+

= Q∆s=2
1 (3.11)

(6,6)

{ [
O∆s=2

2

]+ = Q∆s=2
4[

O∆s=2
3

]+ = −1
2(Q∆s=2

4 −Q∆s=2
5 )

(3.12)

(8,8)

{ [
O∆s=2

4

]+ = Q∆s=2
3[

O∆s=2
5

]+ = −1
2 Q∆s=2

2
(3.13)

It follows from the above considerations that Q∆s=2
1 renormalizes multiplicatively, Q∆s=2

2 mixes
with Q∆s=2

3 and Q∆s=2
4 mixes with Q∆s=2

5 . We denote the renormalization factors computed in this
basis by Z∆s=2

i j . Moreover, in the SU(3) flavor limit they are some relations between the renorma-
lization factors of the ∆s = 2 operators (3.6)-(3.10) and those of the ∆s = 1 operators (2.1). For
example O∆s=2

1 and Q′
1 have the same renormalization factor, and the two by two renormalization

matrix of (Q7,Q8) is related to the one of (Q∆s=2
2 ,Q∆s=2

3 ) in the following way

Z∆s=1
77 = Z∆s=2

22 Z∆s=1
87 = −1

2 Z∆s=2
32

Z∆s=1
87 = −2Z∆s=2

32 Z∆s=1
33 = Z∆s=2

88
(3.14)

1In the literature, we sometimes find the notation VLL for O1, SLL for the set (O2,O3) and LR for the set (O4,O5).
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4. Numerical implementation and preliminary results

The numerical setup of this computation is the same as the one presented in details in two
recent publications [1, 13]. We use n f = 2+1 flavors of domain wall fermion on a Iwasaki gauge
action at two values of the lattice spacing a ∼ 0.086 fm and a ∼ 0.114 fm , corresponding to the
lattice volumes 32× 64× 16 and 24× 64× 16, respectively. On each ensemble the strange sea
quark mass is fixed, while several values of the light sea quark masses have been considered (the
corresponding unitary pion mass varies in the range 290− 420 MeV). In this work we consider
only the light valence quark masses which have the same values as their corresponding sea quarks,
and perform the chiral extrapolations linearly in the quark mass. This computation was done with
20 configurations, and 100 bootstrap samples. In addition to the standard RI-MOM scheme, we
implement also a scheme with non-exceptional (and symmetric) kinematic, which exhibits a better
infrared behavior 2 [14, 15]. We also employ momentum sources [16] in order to obtain small
statistical errors despite the expensive cost of the quark discretization. Furthermore, we use twisted
periodic boundary conditions, which allows us to change smoothly the magnitude of the momentum
without changing its direction (and thus control the O(4) discretization effects) [17]. This setup
has been used recently used for the computation of ZBK [1]. Here we generalize this computation
to the operators relevant for neutral kaon mixing beyond the standard model, and to the ∆I = 3/2
part of K → ππ decay. As described in [18], the Z matrix is essentially the invert of Λi j = Pj{Oi},
where Oi is a four-quark operator which belong to the basis given in eqs (3.6)-(3.10). Pj projects
onto the Dirac and color structure of the operator O j (and a given flavor structure which depends
on the choice of external states).

In figures 3 and 4 we show the normalized Green vertex function Λi j extrapolated to the chiral
limit. The range of simulated momenta corresponds to 1.98 GeV ≤ p ≤ 3.29 GeV on the finest
lattice and to 1.80 GeV≤ p≤ 2.64 GeV on the coarser one. As expected the use of the momentum
sources give us access to a very high statistical precision: at a given momentum the statistical error
is below the permille (∼ 10−4 for ZBK ). Thanks to the twisted boundary conditions, the Z factors
are smooth functions of the momentum (no scatter coming from the O(4) discretization effects is
visible). Finally the effect of the non-exceptional kinematic is clearly visible in figure 4. The matrix
elements shown in these plots should be zero if chiral symmetry was exact. With the Domain-Wall
fermions, this is true only in the limit Ls → ∞, so in practice one has to check whether the effects
of chiral symmetry breaking can be seen within the numerical precision. For the non-perturbative
renormalization, this can be complicated by the presence of some Goldstone poles, which can affect
the vertex functions. These poles are suppressed by the use of a non-exceptional kinematic. We
confirm here an effect already seen in [4], that the good properties of the Domain Wall action can
be obscured by a poor choice of kinematic.

2The non-exceptional scheme implemented here is called SMOM(γµ ,γµ ) in [1]
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Figure 3: Physical Green vertex functions for the non exceptional kinematic (SMOM scheme), in the chiral
limit. On the left panel we show the results for the 243 lattice (a ∼ 0.114 fm) and on the right for the 323

lattice (a ∼ 0.086 fm). The error bars are smaller than the symbols.
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Figure 4: Chiraly disallowed Green vertex functions on the finest lattice for the exceptional (left) and non-
exceptional (right) kinematic. We see that for the exceptional kinematic some of these matrix elements are
suppressed only at high momenta, while in the non exceptional case they are all zero within the statistical
precision.

5. Conclusions and outlook

By combining momentum source with twisted boundary conditions and non exceptional kine-
matic we can obtain the renormalization factors of kaon four-quark operators with a very good
handle on the different kinds or errors: the statistical errors are tiny (below the permille), most of
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the unwanted infrared effects are suppressed and the usual scatter coming from the O(4) discretiza-
tion errors is absent. Even with this precision, when a non-exceptional kinematic is implemented,
the non-physical mixing of the four-quark operators is compatible with zero, thanks to the good
chiral properties of the Domain Wall action. We are currently extending our computation to a larger
physical volume discussed in [9], where the simulated pion mass is significantly smaller (down to
180 MeV). We plan to use the step scaling method introduced in[17] in order to enlarge the Rome-
Southampton window. We have also started a computation of the eye diagrams, with the use of
stochastic sources.

We thank our RBC/UKQCD colleagues for many discussions and contributions to this work.
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