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1. Introduction

Now that the amount of available experimental data on beauty physics coming from the B
factories and the Tevatron is large, and even more data are expected from the LHC, precision
tests of the Standard Model and searches for New Physics have become possible in this area of
flavor physics. Unfortunately, the theoretical uncertainty, mainly because of the difficult to estimate
long-distance effects due to confinement, is currently limiting the impact of future experimental
measurements on New Physics models. Lattice QCD makes it possible to reach a few percents
of theoretical error on those non-perturbative hadronic contributions, but care is needed to obtain
reliable results for b-quark physics. Indeed one has to keep under control simultaneously the finite
size effects and, particularly, the discretisation effects (the lattice spacing should be smaller than
the Compton wavelength of the b-quark) induced by the simulation. In practice it is not possible
to control both effects in one simulation. Different approaches have been proposed in the literature
(see for example [1] for a recent review). The ALPHA Collaboration has followed a strategy
discussed in detail in [2] - [4]: it is based on the use of HQET, in which the hard degrees of
freedom ∼ mb are integrated out and taken into account by an expansion in the inverse b-quark
mass mb . As discussed in those papers and also in earlier work, the benefit is the suppression of
large discretisation effects which may arise in hadronic quantities when the theory is regularised on
the lattice. The difficult aspect of that method is that a matching with QCD, which is the field theory
believed to describe the strong interactions, is needed to absorb ultraviolet divergences appearing
in the effective theory. In HQET those come as inverse powers of the lattice spacing and thus have
to be removed non-perturbatively before the continuum limit can be taken. This method has been
tested in the quenched approximation to study the Bs meson spectrum [5] and to determine the
b-quark mass [3], the decay constant fBs [6], and the coupling gB∗Bπ [7].

The strategy, sketched in Fig. 1, is now being extended to the more realistic Nf = 2 situation.
In the next section, more details are given about the determination of HQET couplings, performed
in a small physical volume (of space extent ∼ 0.5 fm). In section 3, we report on the analysis of a
subset of ensembles generated within the CLS effort, to get HQET energies and matrix elements.
Section 4 contains our conclusions.

2. Computation of the relevant HQET parameters

We write the HQET Lagrangian as

LHQET(x) = Lstat(x)−ωkinOkin(x)−ωspinOspin(x) , (2.1)

where the lowest order (static) term is

Lstat(x) = ψh(x)D0 ψh(x) , (2.2)

and the first order corrections in 1/mb are

Okin(x) = ψh(x)D
2
ψh(x) , Ospin(x) = ψh(x)σ ·Bψh(x) . (2.3)
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We are also interested in the time component of the heavy-light axial current A0. Considering only
the terms which contribute to zero-momentum correlation functions, we write it as

AHQET
0 (x) = ZHQET

A [Astat
0 (x)+ c(1)A A(1)

0 (x)] , (2.4)

A(1)
0 (x) = ψ l(x)

1
2

γ5γi(∇
s
i−
←−
∇

s
i )ψh(x) , Astat

0 (x) = ψ l(x)γ0γ5ψh(x) , (2.5)

where ∇
s
i denotes the symmetric derivative.

In this section we present the computation of ωkin,ωspin,Z
HQET
A ,c(1)A and mbare (the energy shift

which in the static theory absorbs the 1/a divergence of the static energy and at order 1/mb absorbs
a 1/a2 term). These parameters can be used for a computation of the b-quark mass, the heavy-light
meson decay constants ( fB or fBs), as well as for a determination of the spectrum of heavy-light
mesons, including the hyperfine mass splitting. We follow the strategy presented in [4], where the
computation was done in the quenched approximation. We recall here the essential ingredients and
refer the reader to this paper for any unexplained notation and for more detailed explanations. This
computation is done non-perturbatively (in the strong coupling), and at the 1/mb order of the heavy
quark expansion. The light quarks are simulated with 2-flavor Clover-improved Wilson fermions,
and for the discretisation of the heavy quark we use the so-called HYP1 and HYP2 actions [8].
More details about the implementation can be found in [9]. The simulations considered in this
section use the Schrödinger functional setup.

Following [4], we define a set of observables Φi=1,...,5 that we collect in a vector Φ. In the
continuum and large volume limits, Φ1 is proportional to the meson mass and Φ2 to the logarithm
of the decay constant, respectively. Φ3 is used to determine the counter-term of the axial current,
and Φ4,5 for the determination of the kinetic and magnetic term, respectively. We first consider

Figure 1: Sketch of the strategy followed by the ALPHA Collaboration to compute B physics observables
on the lattice.
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a small volume (of linear space extent L1 ∼ 0.5 fm), where the b-quark mass can be simulated
with discretisation effects under control. In this volume, we compute the five observables Φi in
QCD, for four different lattice spacings. In this set of simulations, the light quark masses are
set to 0, while for the (RGI) heavy quark mass M we have chosen nine different values such
that z = L1M = 4,6,7,9,11,13,15,18,21. The lightest masses correspond approximately to the
charm and the heaviest to the bottom quark. In this work we will focus on the heaviest ones. The
continuum limit of each observable is obtained by a linear extrapolation in (a/L1)

2 of the three
finest lattice spacings (except for the two heaviest masses where only the two finest lattices are
used): Φ

QCD
i (L1,M,0) = lima→0 Φ

QCD
i (L1,M,a). This set of simulations is represented by S1 in

Fig. 1. The continuum extrapolations of the first two observables are shown in Fig. 2.
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Figure 2: Continuum extrapolation of the QCD observables Φ1 and Φ2, which are proportional to the finite
volume meson mass and to the finite volume logarithm of the decay constant, respectively. For Φ1 we have
included an error in the continuum coming from the renormalisation of the quark mass (cross on the left).
Results are shown for the nine different values of the heavy quark mass.

In another set of simulations called S2, we compute the corresponding quantities in the effec-
tive theory, using the same value of the physical volume. We then impose the QCD observables
to be equal to their HQET expansion at the 1/mb order 1. This matching can be written in the
following way:

Φ
QCD
i (L1,M,0) = ηi(L1,a)+∑

j
ϕi j(L1,a) ω̃ j(M,a) , (2.6)

where η and ϕ are computed by lattice simulations for different values of the lattice spacing a.
In other words the matching equations determine the set of parameters ω̃ = ϕ−1 [ΦQCD−η ]. For
example, in the the static approximation ϕ is diagonal and (up to a factor L1) η1 is given by the
static energy, ϕ11 is one and ω̃1 is the bare quark mass in static approximation. In table 1, we list
the various parameters together with their values in the static approximation and in the classical
limit.

We then compute η and ϕ in a larger volume of space extent L2 = 2L1 using the same set of
lattice spacings as the one used in the previous step. This step is represented by the set S3. The
observables in this volume are obtained from the parameters ω̃(M,a) determined in the previous

1Terms of order 1/m2
b are dropped without notice.
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ωi definition classical value static value
ω1 mbare mb mstat

bare

ω2 log(ZHQET
A ) 0 log(Zstat

A )

ω3 c(1)A −1/(2mb) acstat
A

ω4 ωkin 1/(2mb) 0

ω5 ωspin 1/(2mb) 0

Table 1: Notation for HQET parameters, their values in classical and static approximation. For the numerical value of
cstat

A , we use the formula given in [10] .

step:
Φ(L2,M,0) = lim

a→0
(η(L2,a)+ϕ(L2,a)ω̃(M,a)) . (2.7)

The continuum limit can be taken because the divergences cancel out in the previous equation. This
procedure can then be re-iterated until the volume reached is large enough for finite size effects to
be negligible, typically around (2fm)3. In practice, it turns out that three different volumes are
enough (L1,L2 and the large volume one). Thus, the HQET parameters that can be used in large
volume simulations (denoted as S4) are given by

ω(M,a) = ϕ
−1(L2,a) [Φ(L2,M,0)−η(L2,a)] . (2.8)

Finally we perform a small interpolation in β in order to obtain the parameters at the lattice spacing
used in the CLS ensembles.

In general the equations (2.6) and (2.7) are meant to be taken at the 1/mb order of HQET,
but they are of course valid in the static approximation if one sets the various pieces to their static
values. In that case, the observables will be denoted by Φstat , and otherwise we write ΦHQET. We
also define the 1/mb correction to be Φ(1/m) = ΦHQET−Φstat. As an illustration, we show some
continuum extrapolations in the volume L2: the first two observables in the static approximation in
Fig. 3, and the 1/mb corrections Φ

(1/m)
4 and Φ

(1/m)
5 (which are sensitive to the kinetic and magnetic

parameter ωkin and ωspin) in Fig. 4. Note that the 1/mb terms are extrapolated linearly in the lattice
spacing, whereas in the static case the continuum extrapolation is done quadratically in the lattice
spacing. This is justified because we use an O(a)-improved action and an O(a)-improved static
axial current. We end this section by collecting in Table 2 the values of the HQET parameters used
in the numerical applications reported in the following.

3. Extraction of HQET hadronic matrix elements

For the computation of the large-volume hadronic matrix elements, we ought to take the con-
tinuum limit and extrapolate in the up/down quark mass to the physical point where mπ has its
physical value. The continuum extrapolation will be left for future work, we here just take a quite
small lattice spacing, a = 0.07fm. We note that in our quenched computations the difference
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Figure 3: Continuum extrapolation of the static approximation of Φ1 and Φ2 in the volume of space extent
L2. The two different colors correspond to two different discretisations of the static propagator : red for
HYP1 and blue for HYP2. Only the three finest lattice have been used in the continuum extrapolation.

Figure 4: Same as Fig. 3 but for the 1/mb terms Φ
(1/m)
4 and Φ

(1/m)
5 , which are chosen to be proportional to

ωkin and ωspin, respectively.

between the continuum limit and a = 0.07fm would be unnoticeable given the present errors. Con-
cerning the extrapolation in the light quark mass, we take into account terms at NLO in the chiral
expansion for the static approximation, but neglect terms of order mlight/mb.

At the first order of the 1/mb expansion our main observables are given by

mB = mbare + Estat + ωkin Ekin + ωspin Espin , (3.1)

mB−mB∗ =
4
3

ωspin Espin , (3.2)

log(a3/2 fB
√

mB/2) = log(ZHQET
A )+ log(a3/2 pstat)+bstat

A amq

+ωkin pkin +ωspin pspin + c(1)A pA(1)
, (3.3)

where bstat
A is an improvement coefficient (in practice we follow [10] for its numerical implemen-

tation). The HQET energies and matrix elements have been measured on a subset of configuration
ensembles produced within the CLS effort [11] with Nf = 2 flavors of O(a)-improved Wilson-
Clover fermions. We have collected in Table 3 the main characteristics of that subset.
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β LMQ ambare log(ZHQET
A ) [log(ZA)]

(1/m) c(1)A /a ωkin/a ωspin/a
5.3 15 41.125(22) −0.120(28) 0.039(26) −0.446(75) 0.476(06) 0.837(35)

Table 2: HQET parameters determined with the standard set of matching conditions, that are used to obtain
the central values of mb and fB; the static quark action is HYP2 .

3.1 Large volume techniques

As interpolating fields we use quark bilinears

Ok(x) = ψh(x)γ0γ5ψ
(k)
l (x) , O∗k(x) = ψ

(k)
l (x)γ0γ5ψh(x) , (3.4)

built from the static quark field ψh(x) and different levels of Gaussian smearing [12] for the light
quark field

ψ
(k)
l (x) =

(
1+κG a2

∆
)Rk

ψl(x) , (3.5)

with APE smeared links [13,14] in the lattice Laplacian ∆, and with the same parameters as in [5].
We compute the following correlators

Cstat
i j (t) = ∑

x,y

〈
Oi(x0 + t,y)O∗j(x)

〉
stat , (3.6)

Ckin/spin
i j (t) = ∑

x,y,z

〈
Oi(x0 + t,y)O∗j(x)Okin/spin(z)

〉
stat , (3.7)

Cstat
A(1),i(t) = ∑

x,y

〈
A(1)

0 (x0 + t,y)O∗i (x)
〉

stat
, (3.8)

using stochastic all-to-all propagators to reduce the variance. From the N×N matrices of correla-
tors Cstat, Ckin/spin, and Cstat

A(1) , we solve the generalised eigenvalue problem (GEVP)

C(t)vn(t, t0) = λn(t, t0)C(t0)vn(t, t0) , (3.9)

to get the energies and operators having the largest overlap with the nth state:

aEeff
n (t, t0) = − ln

(
λn(t +a, t0)

λn(t, t0)

)
, (3.10)

Qeff
n (t, t0) =

Oi(t)vi
n(t, t0)√

vi
n(t, t0)Ci j(t)v

j
n(t, t0)

(
λn(t0 +a, t0)
λn(t0 +2a, t0)

)t/2a

. (3.11)

β a (fm) L3×T mπ (MeV) # traj. sep.
5.3 0.07 323×64 550 152 32

323×64 400 600 32
483×96 300 192 16
483×96 250 350 16

Table 3: Characteristics of the large volume simulations used so far to extract HQET energies and matrix
elements. The last column is meant in terms of trajectories of length τ = 1.
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For a computation of the 1/mb corrections to static energies and matrix elements one needs to solve
the GEVP at the static order only [15]. For instance, in the case of energies, one has

Eeff
n (t, t0) = Eeff,stat

n (t, t0)+ωEeff,1/m
n (t, t0)+O(ω2) , (3.12)

aEeff,stat
n (t, t0) = − ln

(
λ stat

n (t +a, t0)
λ stat

n (t, t0)

)
, (3.13)

Eeff,1/m
n (t, t0) =

λ
1/m
n (t, t0)

λ stat
n (t, t0)

− λ
1/m
n (t +a, t0)

λ stat
n (t +a, t0)

, (3.14)

λ
1/m
n (t, t0)

λ stat
n (t, t0)

= ∑
i, j

vstat
ni (t, t0)

[
C1/m

i j (t)

λ stat
n (t, t0)

−C1/m
i j (t0)

]
vstat

n j (t, t0) . (3.15)

As illustrated in the left panel of Fig. 5, a comparison with quenched data indicates that the statis-
tical error on static energies is not an issue, even at small quark masses. Some care has to be taken
to control the contribution of excited states to extracted energies. For the energy levels determined
from the GEVP, the leading corrections are given by

Eeff,stat
n (t, t0) = Estat

n +β
stat
n e−∆EN+1,nt + . . . (3.16)

where ∆Em,n = Em−En and the condition t0 ≥ t/2 is necessary to prove eq. (3.16). In our analysis
we have chosen a time range to extract the plateaux such that the corrections to Estat

1 are small
compared to its statistical error; we found this to be the case for t0 > 0.3 fm.

3.2 b-quark mass

Once the energies are obtained at the simulated dynamical quark masses, we still need to
extrapolate them to the physical point. We have chosen pion masses below 450 MeV for the
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Figure 5: Plateaux of static energies with N=5 and t0 = 5a (left panel); the quenched data correspond to a
lattice spacing quite close to the CLS set up at β = 5.3. We remind the reader that the absolute value of Estat

has no real meaning without the subtraction of a linear 1/a divergence. Right panel: chiral extrapolation of
r0mstat

B = r0(Estat +mbare). A large part of the errors (dashed part), originating from r0 and mbare, is common
to all data points and therefore irrelevant for the quark mass dependence.
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Figure 6: On the left panel we show the plateaux of ωspinEspin with N=5 and t0 = 4a; the quenched data
correspond to a lattice spacing quite close to the CLS set up at β = 5.3. On the right panel we show the
chiral extrapolation of r0(mB−mB∗) with a LO fit. Here the dashed error due to ωspin and r0 is independent
of the quark mass.

extrapolation of all quantities reported in these proceedings. For the extrapolation of mstat
B ≡ Estat+

mstat
bare we have used the following form

r0mstat
B = b+ cm2

π +dm3
π , (3.17)

where we once set d = 0, and once use d = −3r0ĝ2/(16π f 2
π ) computed with the experimental

value of fπ and the recent lattice determination of ĝ = 0.51(2) [7]. We show these fits in the right
panel of Fig. 5. As our central value of r0mstat

B at the physical point we take the average of the two
extrapolations. Half the difference is included in the systematic errors. At present a much larger
source of uncertainty is r0/a, whose determination is discussed in [17]. Moreover, an uncertainty
of 5% has been added on the scale r0 itself. We take r0 = 0.475±0.025 fm [20–22]. Identifying the
static approximation result, mstat

B , with mexp
B , we can determine the RGI b-quark mass from static

HQET. Translating as usual to the MS scheme with 4-loop perturbation theory and the known
Λ-parameter [18], we find

mMS
b (mMS

b )stat
Nf=2 = 4.255(25)r0(50)stat+renorm(?)a GeV , (3.18)

where the first error comes from the uncertainty on r0, while the second error includes the statis-
tical error on aEstat, the uncertainty on the chiral extrapolation and the error on the quark mass
renormalisation constant ZM in QCD [19]. The latter is currently dominating. The “(?)a” indicates
that a continuum limit is not yet performed, but as mentioned earlier we expect only a smaller error
due to that [4].

Amongst the O(1/mb) corrections to energies the hyperfine mass splitting is particularly in-
teresting since here the 1/mb term is the dominant one and is given by a single HQET parameter,
ωspin. This contribution can hence be discussed separately. Its determination is encouraging, as
far as the statistical uncertainty and the chiral extrapolation are concerned, as shown in Fig. 6.
Plateaux have the same quality as in the quenched case and the statistical precision is good enough
to perform a reasonable chiral extrapolation. Since we have seen in the quenched approximation

9
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that cut-off effects can be sizable for this quantity, we do not quote the hyperfine splitting in MeV
at the moment.

Including the magnetic as well as the kinetic correction, we compute mHQET
B ≡ mstat+1/m

B , per-
form the chiral extrapolation as for mstat

B , and from equating mHQET
B = mexp

B we obtain the b-quark
mass up to tiny Λ3/m2

b effects as

mMS
b (mMS

b )
∣∣∣HQET

Nf=2
= 4.276(25)r0(50)stat+renorm(?)a GeV . (3.19)

Sources of errors are the same as in the static case. Some previous determinations read

mMS
b (mMS

b )
∣∣∣HQET

Nf=0
= 4.320(40)r0(48) GeV [3] ,

mMS
b (mMS

b ) = 4.163(16) GeV [23] .

In the future, a nice check of our result will consist in doing the same computation in a partially
quenched set up; there, the experimental inputs will be the Bs spectrum, and the determination of
the hopping parameter of the strange quark κs will be necessary. We will then be able to directly
observe possible quenching effects because in the comparison with [3] we can use exactly the
same experimental input. While the agreement with [23] is not convincing at the moment, it does
not seem worrying given the present errors. We emphasize that within about 100 MeV all these
numbers agree, while a more precise statement needs additional work, in particular the continuum
limit on our side, and on a longer term Nf > 2.

3.3 B meson decay constant and Vub

Let us now discuss fB. In HQET we consider the particular combination 2

Φ1 ≡ fB
√

mB/2 , (3.20)

see eq. (3.3). We separate the static and the 1/mb contributions as

log(r3/2
0 Φ1) = log(r3/2

0 Φ
stat
1 )+ [log(Φ1)]

(1/m) , (3.21)

[log(Φ1)]
(1/m) = [log(ZA)]

(1/m)+ωkin pkin +ωspin pspin +(c(1)A −acstat
A )pA(1)

. (3.22)

On the left panel of Fig. 7 we show that the GEVP method works as well as in the quenched
case to extract the static matrix element. A good plateau is visible and our confidence in it is
also based on the knowledge that corrections are O(e−∆EN+1,nt0) when the computation is done as
here (see [6, 15]). We have again applied two kinds of extrapolations of the static approximation
r3/2

0 Φstat
1 to the physical point [24]:

r3/2
0 Φ

stat
1 = b+ cm2

π (LO) , (3.23)

r3/2
0 Φ

stat
1 = b′

[
1− 3

4
1+3ĝ2

(4π fπ)2 m2
π ln(m2

π)+ c′m2
π

]
(HMχPT) . (3.24)

2We warn the reader that in this section we follow the notations introduced in [6], where the subscript 1 represents
the ground state. In particular Φ1 should not be confused with the finite volume meson mass Φ1 introduced in section 2.
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Figure 7: On the left panel we show the plateaux of r3/2
0 pstat

1 with N=3 and t− t0 ∼ 0.3 fm; the quenched
data correspond to a lattice spacing quite close to the CLS setup at β = 5.3. On the right panel we show the
chiral extrapolation of r3/2

0 Φstat
1 .

Again we fixed ĝ [7]. The same fit form is used for r3/2
0 Φ

HQET
1 . As shown in the right panels of

Fig. 7 and Fig. 8, whether we do or do not include the chiral logarithm of HMχPT, changes the
value at the physical point by a small but noticeable amount. At the moment we take the average of
the two extrapolations as the central value and include half of the difference as part of the systematic
error. We obtain

fB
HQET
Nf=2 = 178(16)(?)a MeV , (3.25)

where the first error includes the statistical uncertainty on matrix elements, the systematics coming
from chiral extrapolation and the uncertainty on the physical scale of r0, while cut-off effects are
not estimated yet. Let us recall that in the quenched approximation we have obtained fBs

HQET
Nf=0 =

234(18) MeV [26] for r0 = 0.475 fm and the error covers for a 5% uncertainty on r0.
At present there is a tension between the two ways of determining Vub from the exclusive B-

decays B→ πlν and B→ τν [27]. Both of them rely on the determination of the hadronic matrix
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t
0
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ln
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)1/
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 -
 [
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(r
0
 mπ)
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1.5

r 03/
2

Φ
1 [

z=
15

]

r
0

3/2 Φ
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3/2 Φ
1

HQET

LO chiral fit
NLO chiral fit

Figure 8: Plateau of log(Φ1)
(1/m)− [log(ZA)]

(1/m) for N=4, t− t0 = 4a, z = 15 and mπ ' 550 MeV (left
panel) and chiral extrapolation at the static order and at order 1/m (right panel).
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Group Method Renormalisation Range in a
ALPHA HQET at O(1/mb) non-perturbative 0.07fm
ETMC twisted mass non-perturbative [0.065 − 0.1] fm

extrapolation in mb

HPQCD NRQCD 1-loop PT [0.09 − 0.12] fm
FNAL/MILC Fermilab action 1-loop PT3 [0.09 − 0.12] fm

Table 4: Present methods in lattice computations of fB in unquenched simulations.

elements from lattice QCD. In the Standard Model, the branching ratio for the latter decay is simply
proportional to f 2

B|Vub|2 with all other factors known. In Fig. 9, we have collected the values of fB

obtained recently by several collaborations [25], from Nf = 2 (ALPHA, ETMC) and Nf = 2+1
(FNAL/MILC, HPQCD) simulations. The heavy quark is discretised differently in each of the
quoted computations: NRQCD (HPQCD), Fermilab action (FNAL/MILC), Twisted-Mass QCD
(ETMC) and HQET (ALPHA). The systematic errors and difficulties in these different approaches
are therefore rather different. For NRQCD a continuum limit does not exist and one studies a range
of lattice spacings in the window between sizable discretisation errors and the divergent behaviour.
In the relativistic twisted-mass approach one extrapolates in the heavy quark mass by assuming a
HQET inspired form, and a continuum extrapolation has been performed. Some computations rely
on perturbatively determined parameters. The FNAL/MILC and HPQCD computations use 1-loop
renormalization3 for the currents and part of the parameters in the Lagrangian. In our approach, all
renormalization is done non-perturbatively and the theory has a continuum limit, but so far only a
single lattice spacing of a = 0.07 fm is available in large volume. There is an intrinsic truncation
error of O(Λ2/m2) which is present (more or less explicitly) in all approaches.4 We have sketched
in Table 4 some of these issues. Despite the rather different characteristics, the results are very
similar. The range of fB in Fig. 9 does not reach large enough values to remove the tension between
B→ τν and B→ πlν branching ratios within the Standard Model, and from Fig. 9 it seems very
unlikely that the lattice determinations of fB are the reason for the tension. However, interpreting
this as a hint for physics beyond the Standard Model, one has to keep in mind that the B→ πlν
form factors are less well studied than fB and that the experimental determination of the branching
ratio B→ τν is rather difficult.

4. Conclusions

We have reported on the status of the project undertaken by the ALPHA Collaboration to
extract relevant B physics quantities from Nf = 2 lattice simulations in the framework of HQET
expanded at O(1/mb). The non-perturbative matching of HQET with QCD, through simulations
performed in a small volume L1 ∼ 0.5 fm, is almost done. The measurement of HQET energies and
matrix elements, using the GEVP approach, has started recently on ensembles produced by CLS.
The analysis of quantities like the b-quark mass and the B decay constant is on the way. The first

3FNAL/MILC splits the renormalization factor into a non-perturbatively computed part and a rest estimated by
1-loop perturbation theory.

4Generically the truncation error is Λ2/m2
b, but for the extrapolation in m significantly smaller masses enter.
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Figure 9: Collection of recent lattice computations of fB.

results are promising and once we have controlled cut-off effects by simulation at several lattice
spacings, we will also determine hadronic parameters of the B− B̄ mixing or B→ π semileptonic
form factors as well as more details of the spectrum of hadrons with a b-flavor.

Acknowledgments

Work supported in part by the SFB/TR 9 and grant HE 4517/2-1 of the Deutsche Forschungs-
gemeinschaft and by the European Community through EU Contract No. MRTN-CT-2006-035482,
“FLAVIAnet”. We thank F. Bernardoni for discussions on HMChPT, and we thank CLS for the
joint production and use of gauge configurations [11]. Our simulations are performed on Blue-
Gene, PC-clusters, and apeNEXT of the John von Neumann Institute for Computing at FZ Jülich,
of the HLRN in Berlin, and at DESY, Zeuthen. We thankfully acknowledge the computer resources
and support provided by these institutions.

References

[1] J. Heitger, to appear in PoS LAT2010.

[2] J. Heitger and R. Sommer [ALPHA Collaboration], JHEP 0402, 022 (2004) [arXiv:hep-lat/0310035].

[3] M. Della Morte, N. Garron, M. Papinutto and R. Sommer [ALPHA Collaboration], JHEP 0701, 007
(2007) [arXiv:hep-ph/0609294].

[4] B. Blossier, M. Della Morte, N. Garron and R. Sommer [ALPHA Collaboration], JHEP 1006, 002
(2010) [arXiv:1001.4783 [hep-lat]].

[5] B. Blossier, M. Della Morte, N. Garron, G. von Hippel, T. Mendes, H. Simma and R. Sommer
[ALPHA Collaboration], JHEP 1005, 074 (2010) [arXiv:1004.2661 [hep-lat]].

[6] B. Blossier, M. Della Morte, N. Garron, G. von Hippel, T. Mendes, H. Simma and R. Sommer
[ALPHA Collaboration], [arXiv:1006.5816 [hep-lat]].

13



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
3
0
8

Nicolas Garron

[7] J. Bulava, M. A. Donnellan and R. Sommer, PoS (Lattice 2010) 303 [arXiv:1011.4393 [hep-lat]].

[8] M. Della Morte, A. Shindler, and R. Sommer [ALPHA Collaboration], JHEP 051, 08 (2005),
[hep-lat/0506008]

[9] M. Della Morte, P. Fritzsch, J. Heitger, H. Meyer, H. Simma, and R. Sommer [ALPHA
Collaboration], PoS LAT2007, 246 [hep-lat/0710.1188]

[10] A. Grimbach, D Guazzini, F. Knechtli and F. Palombi, JHEP 03, [hep-lat/0802.0862]

[11] Coordinated Lattice Simulations, https://twiki/cern.ch/twiki/bin/view/CLS/WebHome.

[12] S. Güsken, U. Löw, K.-H. Mütter, R. Sommer, A. Patel and K. Schilling, Phys. Lett.B227 (1989) 266.

[13] M. Albanese et al., [APE Collaboration], Phys. Lett. B 192,163 (1987).

[14] A. Lichtl, S. Basak, R. Edwards, G. T. Fleming, U. M. Heller, C. Morningstar, D. Richards, I. Sato,
and S. Wallace, PoS LAT2005 076 [hep-lat/0509179].

[15] B. Blossier, M. Della Morte, G. von Hippel, T. Mendes and R. Sommer [ALPHA Collaboration],
JHEP 0904, 094 (2009) [arXiv:0902.1265 [hep-lat]].

[16] J. L. Goity, Phys. Rev. D 46, 3929 (1992) [arXiv:hep-ph/9206230].

[17] B. Leder et al [ALPHA Collaboration], to appear in PoS LAT2010.

[18] M. Della Morte et al. [ ALPHA Collaboration ], Nucl. Phys. B713 (2005) 378-406.
[hep-lat/0411025].

[19] P. Fritzsch, J. Heitger, N. Tantalo, JHEP 1008 (2010) 074. [arXiv:1004.3978 [hep-lat]].

[20] R. Baron et al, [ETM Collaboration], JHEP 1008:097,(2010) [arXiv:0911.5061 [hep-lat]]

[21] C. T. H. Davies et al. [ HPQCD Collaboration ], Phys. Rev. D81 (2010) 034506. [arXiv:0910.1229
[hep-lat]].

[22] Y. Aoki, S. Borsanyi, S. Dürr et al., JHEP 0906 (2009) 088. [arXiv:0903.4155 [hep-lat]].

[23] K. G. Chetyrkin, J. H. Kühn, A. Maier, P. Maierhofer, P. Marquard, M. Steinhauser and C. Sturm,
Phys. Rev. D 80, 074010 (2009) [arXiv:0907.2110 [hep-ph]].

[24] S. R. Sharpe and Y. Zhang, Phys. Rev. D 53, 5125 (1996) [arXiv:hep-lat/9510037].

[25] E. Gamiz, C. T. H. Davies, G. P. Lepage, J. Shigemitsu and M. Wingate [HPQCD Collaboration],
Phys. Rev. D 80, 014503 (2009) [arXiv:0902.1815 [hep-lat]];
B. Blossier et al. [ETM Collaboration], JHEP 1004, 049 (2010) [arXiv:0909.3187 [hep-lat]];
J. Simone et al [FNAL/MILC], to appear in PoS LATT2010.

[26] B. Blossier et al. [ALPHA Collaboration], arXiv:1006.5816 [hep-lat].

[27] F. Porter, talk given at ICHEP 2010.

14


