PROCEEDINGS

OF SCIENCE

The continuum limit of 2+1 flavor DWF ensembles

Christopher Kelly *

Columbia University,

905 Pupin Hall,

116th St & Broadway,

New York, NY 10027, USA.

E-mail: ckel | y@hys. col unbi a. edu

Peter Boyle

School of Physics,

The University of Edinburgh,

James Clerk Maxwell Building, King's Buildings,
Mayfield Road,

Edinburgh EH9 3JZ, UK.

E-mail: paboyl e@h. ed. ac. uk

For the RBC and UKQCD collaborations

We present light pseudoscalar physics in the continuunt in2+1 flavour domain wall QCD
by the RBC and UKQCD. We make use of a fermion action with gdadht symmetry and use
two different lattice spacings.

We use a new approach to match ensembles within the rangemeflated masses, and
apply a simultaneous chiral and continuum extrapolatiore décuss the evidence for chiral
curvature in our data and present continuum results for prmhkaon decay constantf / fr,
quark masses and the neutral kaon mixing paranigter

The XXVIII International Symposium on Lattice Field Theory
June 14-19,2010
Villasimius, Sardinia Italy

*Speaker.

(© Copyright owned by the author(s) under the terms of the Cre&@tdmmons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



The continuum limit of 2+1 flavor DWF ensembles Christopher Kelly

1. Introduction

In these proceedings we present continuum results for several Bgibhic quantities ob-
tained through a combined chiral and continuum extrapolation of the RBWKQCD collabo-
ration’s 32 x 64 and 24 x 64 domain wall fermion ensemble sets with= 16 and the Iwasaki
gauge action af = 2.25 and 213 respectively. These are henceforth referred to as theus®
24° ensemble sets respectively. The lattice spacings, as determined by the edihdlysis, are
2.28(3) GeV and 173(3) GeV such that the lightest unitary pion masses-ag90 MeV and~ 330
MeV.

We discuss the definition of the scaling trajectory along which we take the comtitimit
and give a brief account of the techniques used to fit and extrapolatdatau We then discuss
the evidence for chiral curvature in our data and our strategy for estignétensystematic error
associated with the chiral extrapolation. Finally we present results foritimegmd kaon decay
constants, quark masses and the neutral kaon mixing paraBetelere the quark masses aBd
are renormalised into tHdS scheme via several non-perturbative lattice momentum schemes with
non-exceptional kinematics.

2. Fixing the scaling trajectory

In order to take the continuum limit we must definealing trajectory that is the curve of
armg(B) andarm (B) (for a 2+1f simulation) that is followed g — . Herearh = a(m+ ms) is the
DWF PCAC quark mass in lattice units. One method of defining the scaling trajéstiarchoose
values for two dimensionless physical quantities, labe##gdand %, and then to tunems(f)
andam () such that these quantities remain constang as changed. In the continuum limit,
all choices for the two dimensionless quantities are equivalent, wherdiagt@(3, the different
choices for%, and% result ino'(a?) differences between the values of other lattice quantities on
the scaling curve. We choosg = (am,)/(amnn) and%, = (amp)/(amnn), wheream,, amp
andamypp, are the dimensionless pion, kaon afebaryon masses at general (unitary) light and
heavy quark masses.

In order to match to the real worldz, and.%, should be fixed to their physical values in
the continuum limit. Unfortunately this requires a sizeable extrapolation in therylight quark
mass below the range of our data. In order to maximise statistics, this extrapasatiohieved
through a combined fit to both the 3and 24 ensemble sets, where the fit forms include explicit
¢ (a?) dependence. The chiral anséatze and the resulting fit forms are diddngbe next section.

Before we introduce the additional complexities of the chiral/continuum fit, it eulizo
consider tuning to annphysicalkcaling curve that passes through our data. We choose the values
of %, and %y from the the 32 data atam (32%) = 0.006 andam,(32%) = 0.03. The 24 data is
then linearly interpolated to find the valuesanf) (24%) andam,(243) at which those ratios match.
This procedure is described in more detail in refs. [1] and [2]. We firdntlatch point values
am (24%) = 0.00581) andam,(24%) = 0.03845). We can determine the ratio of lattice scales
Ra = a(32%) /a(24%) from the ratio of a lattice quantity between the two lattices at the match point.
Using theQ-baryon mass, we fin®, = mypn(32%) /munn(24%) = 0.7585). We also define two
further quantitiesZ, and Z;,, from the ratios of light and heavy quark masses (in physical units)

between the lattices; 5 5
1 anf 1 anf
Z = 7"’"1‘(733) andz, = —Z{L’S?’),
R. am (24°) Ra afy (24°)
for which we obtairZ; = 0.981(9) andZ, = 0.974(7).
Repeating this analysis using values#fand %, obtained from several other data points on

both lattices, we are able to study the dependend®af; andZ;, upon the values o7, and %.

(2.1)



The continuum limit of 2+1 flavor DWF ensembles Christopher Kelly

T T o. T T
.
V4
1= 32% attice 24 lattice «Z | 32 lattice 24 lattice
h

1) | gt

0.75—

| | 1 | 1 4 1 | 1 |
0.004 0.006 OI.%OB 0.005 0.01 o 0.004 0.006 0#\08 0.005 0.01
1 1

Figure 1: 7, Z, (left) andR, (right) obtained by matching at several different valuepand %, obtained
from the simulated data. The x-axis labels give the cormedjpg light quark mass. The heavy quark mass is
fixed toam,(32) = 0.03 andam, (24%) = 0.04 for match points on the 32nd 24 ensemble sets respectively.

The results of these analyses are shown in figure 1. We find no statistigaliffcant dependence
of these ratios upon the values @} and%,. This can be explained by considering two nearby
scaling trajectories defined Wiy7, %) and (%, %;,) respectively, where the corresponding quark
masses on the lattiGeare (arfy, ary) and(af{®,arif{®). Expanding about the continuum limit,
MY _ o (M) &2
(i) ~m (g ) - ocos® 2

and similarly for the heavy quarks. Hede vanishes a$%,,%n) — (%,,%;,). Together with a
similar demonstration that the difference betw&gpiR, and unity can be neglected, this implies

(g) = 1+diNgcp (a(32%)% —a(24%)?) . (2.3)

For sufficiently close scaling trajectorial js small and the7(a?) term on the right can be dropped.
This observation allows us to fix the relation betweeh@dd 32 quark masses and lattice spacings
across the whole range of our data prior to performing the combined fisimg 4, Z, andR,
determined above.

3. Combined fit strategy

We wish to perform a combined fit to both ensemble sets, using the vali&sff andR,
determined above to relate the quark masses between the lattices. The cftirallon fit forms
are obtained by performing a double-expansion in the quark massestiadpacing abowt = 0
and some general quark massgandnmy)". This gives forms which have the structure

A+ B& +C¢ (Mg — M) + D¢ (My —mMNa 4., (3.1)
where the indext is summed over andh. We choose a power counting whereby termgé?m)
and higher are neglected.

We obtain chiral/continuum fit forms by extending the expansion to partialyrgoed masses
and taker{" to be both the S(2) chiral limit and also some non-zero mass point. With the power
counting defined above, the fit forms obtained by expanding about it it are the usual
NLO partially-quenched ChPT fit forms with an additioral coefficient. For example for the
(unitary) pion decay constant we obtain the form

8 X Xi
2 . —_— _—— —_—
fi="f [1+cfa] + f { f2(2I4+I5))(| 8 Zleog/\)z( }, (3.2)
wherey, = 2Bm. We refer to these with the label ‘ChPT’. We also include finite-volume cerrec

tions to the chiral logarithms in order to obtain a second ansatz which we @bBITfv'. Finally,
expanding about some unphysical quark mass and truncatifi¢ggdim) we obtain linear analytic
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Figure 2: Plots of ZTﬁy/(rﬁer M) on the 33 m = 0.004 ensemble, overlaid by the ChPT (left) and analytic
(right) fit curves. The data indicated by filled circular pisiwas included in the fit and the heavier data points
indicated by unfilled square points were not. The ChPT fit esirassociated with the heavier masses above
the cut do not well describe the data and cannot be seen whithiplotted range.

fit forms (labelled ‘analytic’) of the form
1

The heavy quark dependence is always modeled as a linear expabsidgritee physical strange
quark mass. Note that we do not expand around thggthiral limit as our previous analysis [3]
showed that NLO S(B) ChPT poorly described our 34lata.

In the matching analysis in the previous section we defined the quamtjties, andmuy, to
scale perfectly at a particular match point. Consider these quantities &trgaasesn{in physical
units) away from the match point masg'®°" Setting the expansion mass of the double-expansion
to MM = MMahye find that scaling imperfections ariseagém— MMM which is neglected by our
power counting. As a result these quantities can be treated as artefaeinil the@? dependence
of their fit forms fixed to zero.

After performing a combined fit to the data, we match to the physical scalingtivayeby
finding the values ofm andm, (in physical units) that give continuum values fioy;/mg and
mk /Mg that are equal to their physical values, and the overall scale is setryig to its physical
value. This involves an elaborate iterative procedure which is desdrilmbtail in ref. [2].

In the remaining sections we discuss some of the results of our combinetodmti@muum
analysis.

C(My+my) +C'm . (3.3)

4. Evidence for chiral curvature

Figure 2 shows the ChPT and analytic fits overlaying the partially-quernddtacon the light-
est 32 ensemble. The values plotted amﬁ;/(r?wr M), where the ratio is traditionally used to
enhance the visibility of chiral curvature in the data. Both fit forms desdhibalata well within
the range over which the fit was performed, but the ChPT form, unlike naé/tic form, does
not continue to describe the heavier data above the mass cut. The dmpaveature in thdinear
analytic fit forms is an artefact of the plot format, arising from the ratio oftthi® and the average
valence quark mass; within our data we observe no statistically significarattate.

Evidence for the existence of chiral curvature can be found by anglyse consistency of
the analytic results with the predictions of Goldstone’s theorem. The partiaéipaped analytic
fit form for the pion mass is L

”ﬁyZCS""ﬂLQCT"(ﬁH@HCS""m. (4.1)
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Figure 3: Comparisons of the chiral extrapolations Bf (left) and Bk (right) using both the ChPT and
analytic fit forms overlaying the data corrected to the aoniim limit.

Goldstone’s theorem states that the pion mass vanishes as the unitary $ightassiy = fy =

M) goes to zero, which implies th@f™ = 0. In practise we find that]"™ = —0.001(1), which is
completely consistent. However, Goldstone’s theorem also states that thexgss should vanish
in the limit of vanishingvalencequark massrfy = m, = 0), irrespective of the sea quark mass, and
thusCy"™ = 0. We findCJ™ = 0.43(8), which implies that chiral curvature must exist somewhere
above the partially-quenched chiral limit. Of course this may happen at muer fmon masses
than the physical mass, so we cannot rule out the validity of the analytimsixyafor masses
my; > 135 MeV.

In figure 3 we show the chiral extrapolation of the pion decay constangindhtinuum limit
using both the ChPT and analytic fit forms. The analytic prediction for theipalf; is 1262)
MeV, which is ~ 3.4% (220) lower than the PDG value of 1362). We obtain an estimate
of the finite volume corrections from the difference between the ChPfJfv=(121(2)) and ChPT
(fr=1192)) results, giving 2 MeV. With this correction the analytic result is borderloresistent
with the physical value. This implies only a small amount of chiral curvatunebeaexhibited in
f,r above the physical pion mass. The NLO ChPT prediction for the phykjaalhowever~ 9%
(5.70) too low, or 7.2% after finite-volume corrections are applied. This discrepancy is densis
with the expected 5% 15% NNLO corrections, where these values are obtained by squaring the
typical separation of our data from the LO decay consfaf20%— 40%). The evidence therefore
suggests that the chiral behaviourfgfis mostly linear in the region above the physical pion mass,
and that higher order terms in the chiral expansion are required taluesais behaviour.

5. Physical predictions for the decay constants

Although the analytic formulae describe the data surprisingly well and appga/e a result
for f;; that is more consistent with the physical value, there are strong theoratigahents for
chiral perturbation theory, and it may just be that higher order correctoe required to describe
physics in the simulated mass range. We therefore choose to compromiserméeawo ap-
proaches by taking the central value as the average of the ChPThnalydi@results, and include
a chiral systematic error taken from the difference of these two resulsctivering both possibil-
ities. We also include an additional systematic for the finite volume effects takeahove, from
the difference of the ChPTfv and ChPT results. In this scheme we find

feontinuum _ 1 942)(5) MeV (5.1)
feoninuum _ 1492)(4) MeV (5.2)
(fi/ fr)CONINUUM — 1 2047)(25), (5.3)



The continuum limit of 2+1 flavor DWF ensembles Christopher Kelly

where the quoted errors are statistical and systematic respectively.
6. Physical predictions for the quark masses

The quark masses determined in the combined fits procedure are renodnraisenatching
scheme’ in which the renormalisation coefficient is unity on th&l&gice andz, () for the light
(heavy) quark. In this scheme we find

Myg = 2.35(8)(9) MeV and mMs=637(9)(1)MeV. (6.1)
In order to convert these to the more conventidi&-scheme, we first convert to an intermediate
lattice scheme and then run to the conventional 2 GeV using the non-peisterdbttice data. The
conversion tdVIS is then applied using perturbation theory at this higher scale.

The mass renormalisation factor in the lattice scheme is obtained from the rdisatina
coefficient of the projected, amputated scalar bilinear vertex in sevara@ms of the Rome-
Southampton RI-MOM scheme [4]. In our previous analysis [5] we skidivat a large systematic
error arises due to the use of ‘exceptional kinematics’, where the incoaridgoutgoing mo-
menta of the vertex are equal. This allows soft-momentum loops to occur énemtive external
momentum is large. The vertex therefore receives large contributionsrfromenta below the
spontaneous chiral symmetry breaking scale, enhancing the effeat dfd¢haking at these hard
momenta. For this analysis we therefore use non-exceptional ‘symmetric’ miomeonfigura-
tions, for which the incominggy) and outgoing o) momenta are different but obey the condition
p? = p3 = (p1— p2)? = ¢2. This allows us to assign an exact scaj®) o the vertex. We use two
different symmetric-MOM (SMOM) schemes [6] defined using differenajgxction operators. We
also improve the determination of the renormalisation coefficients over thepseanalysis by
using volume source propagators to calculate the vertices. This leads ity large reduction in
the effects of gauge-field noise, vastly improving our statistical errdune. details of the determi-
nation of these renormalisation factors is discussed in greater detail j]reflere we only quote
the results in thé1S-scheme:

MS(2GeV) =359(13)(16)MeV  and  mS(2GeV) =96.2(1.6)(2.1)MeV.  (6.2)
where the systematic (second) error includes the NPR error.
7. Physical predictions forBg

Finally we obtain physical predictions for the neutral kaon mixing paranigteusing our
combined fitting proceduréy is defined as the non-perturbative contributioito— K° mixing.
In combination with experimental results for the measure of indirect CP-vialatiand pertur-
bation theory for the hard-scattering kerrgk, can be used to measure the CKM matrix phase
which parameterises all CP-violation in the Standard Model. It is calculatéuedattice using an
effective four-quark operator

Ovv+an= (SV'Ud (SyHd) + (Sy°y*d) (S°yd) . (7.1)
normalised by the square of tki@/Ao|K) matrix element:
(K°| Gy aalKO)

3 (K%A0|0)(0]Ag| K?)
As before we apply our chiral/continuum power counting to expansiomstadbe chiral limit and a
non-zero mass point, giving analytic, ChPT and ChPTfv fit forms. Famgte, the ChPT fit form

is c

WA Hien(%] ],
whereh labels to the (fixed) strange quarkJabels the partially-quenched light valence quark,
and x; = 2Bm as before. AdBk is a renormalisation scheme dependent quantity the fits must
be performed to renormalised quantities. Here weMSerenormalisation coefficients calculated

Bk = (7.2)

B — BY [1+caa 4
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via five intermediate non-perturbative lattice schemes: the RI-MOM schethéansymmetric
SMOM variants defined through the different choices for the projectpmraior of the four-quark
vertex and of the pseudoscalar bilinear vertex with which it is normalisedthEdinal result we
choose the lattice scheme for which & conversion factors are best described by perturbation
theory in the 2 GeV region at which results in this scheme are conventionaltgdjublere we
present only the preliminary result of this analysis,

BK(MS, ZGGV) = O~546(7)sta1(16)x(3>FV(14)NPR; (7.4)
where the errors are the statistical error and the chiral, finite-volume BRIdystematics respec-
tively. The chiral error is determined as before from the differencthefanalytic and ChPTfv
results. This difference is shown in figure 3, and is clearly much smallerfthafiy. More details
of these calculations and an in-depth discussion of the other systematits eféen be found in
ref. [7].

8. Conclusions

We have discussed and presented results from a simultaneous chiralfoongrtrapolation
of two domain wall fermion ensemble sets. We described a procedure in Wigdattices are
matched first to an unphysical scaling trajectory running through the fdata,which we obtain
the relation between the quark masses and the ratio of cutoff scales béedattices. We demon-
strated that our data behave very linearly and that very little room is avaftatddiral curvature
between our data and the physical point, certainly less than NLO ChPEstisgdiowever using
Goldstone’s theorem we showed evidence for the existence of chikeltave on the pion mass in
the partially-quenched direction. We discussed our strategy for estimatirgystematic error on
the chiral extrapolation and presented results for the decay constaatk,qasses arigk .

In future work we intend to include results from our new domain wall DSDR kiction [8]
which will enable us to simulate at significantly lower pion masses close to thecphp®int.
Coupling this with our recent advances [9] in the non-perturbativermnealisation techniques will
allow us to improve the systematic errors on all of the results presented inpftesedings.

The author would like to thank all members of the UKQCD and RBC collaboration.
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