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1. Introduction

In these proceedings we present continuum results for several light hadronic quantities ob-
tained through a combined chiral and continuum extrapolation of the RBC andUKQCD collabo-
ration’s 323×64 and 243×64 domain wall fermion ensemble sets withLs = 16 and the Iwasaki
gauge action atβ = 2.25 and 2.13 respectively. These are henceforth referred to as the 323 and
243 ensemble sets respectively. The lattice spacings, as determined by the combined analysis, are
2.28(3) GeV and 1.73(3) GeV such that the lightest unitary pion masses are∼ 290 MeV and∼ 330
MeV.

We discuss the definition of the scaling trajectory along which we take the continuum limit
and give a brief account of the techniques used to fit and extrapolate our data. We then discuss
the evidence for chiral curvature in our data and our strategy for estimating the systematic error
associated with the chiral extrapolation. Finally we present results for the pion and kaon decay
constants, quark masses and the neutral kaon mixing parameterBK . Here the quark masses andBK

are renormalised into theMS scheme via several non-perturbative lattice momentum schemes with
non-exceptional kinematics.

2. Fixing the scaling trajectory

In order to take the continuum limit we must define ascaling trajectory, that is the curve of
am̃s(β ) andam̃l (β ) (for a 2+1f simulation) that is followed asβ →∞. Heream̃= a(m+mres) is the
DWF PCAC quark mass in lattice units. One method of defining the scaling trajectory is to choose
values for two dimensionless physical quantities, labelledRh andRl , and then to tuneam̃s(β )
andam̃l (β ) such that these quantities remain constant asβ is changed. In the continuum limit,
all choices for the two dimensionless quantities are equivalent, whereas atfinite β , the different
choices forRl andRh result inO(a2) differences between the values of other lattice quantities on
the scaling curve. We chooseRl = (amll )/(amhhh) andRh = (amlh)/(amhhh), whereamll , amlh

andamhhh are the dimensionless pion, kaon andΩ-baryon masses at general (unitary) light and
heavy quark masses.

In order to match to the real world,Rh andRl should be fixed to their physical values in
the continuum limit. Unfortunately this requires a sizeable extrapolation in the unitary light quark
mass below the range of our data. In order to maximise statistics, this extrapolation is achieved
through a combined fit to both the 323 and 243 ensemble sets, where the fit forms include explicit
O(a2) dependence. The chiral ansätze and the resulting fit forms are discussed in the next section.

Before we introduce the additional complexities of the chiral/continuum fit, it is useful to
consider tuning to anunphysicalscaling curve that passes through our data. We choose the values
of Rl andRh from the the 323 data ataml (323) = 0.006 andamh(323) = 0.03. The 243 data is
then linearly interpolated to find the values ofaml (243) andamh(243) at which those ratios match.
This procedure is described in more detail in refs. [1] and [2]. We find the match point values
aml (243) = 0.0058(1) andamh(243) = 0.0384(5). We can determine the ratio of lattice scales
Ra ≡ a(323)/a(243) from the ratio of a lattice quantity between the two lattices at the match point.
Using theΩ-baryon mass, we findRa = mhhh(323)/mhhh(243) = 0.758(5). We also define two
further quantities,Zl andZh, from the ratios of light and heavy quark masses (in physical units)
between the lattices;

Zl =
1
Ra

am̃l (323)

am̃l (243)
and Zh =

1
Ra

am̃h(323)

am̃h(243)
, (2.1)

for which we obtainZl = 0.981(9) andZh = 0.974(7).
Repeating this analysis using values ofRl andRh obtained from several other data points on

both lattices, we are able to study the dependence ofRa, Zl andZh upon the values ofRl andRh.

2



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
3
0
9

The continuum limit of 2+1 flavor DWF ensembles Christopher Kelly

0.004 0.006 0.008 0.005 0.01
m

l

0.96

0.97

0.98

0.99

1
Z

l
Z

h
32

3
 lattice 24

3
 lattice

0.004 0.006 0.008 0.005 0.01
m

l

0.74

0.75

0.76

0.77

0.78

32
3
 lattice 24

3
 lattice

Figure 1: Zl , Zh (left) andRa (right) obtained by matching at several different values ofRl andRh obtained
from the simulated data. The x-axis labels give the corresponding light quark mass. The heavy quark mass is
fixed toamh(32)= 0.03 andamh(243)= 0.04 for match points on the 323 and 243 ensemble sets respectively.

The results of these analyses are shown in figure 1. We find no statistically significant dependence
of these ratios upon the values ofRl andRh. This can be explained by considering two nearby
scaling trajectories defined by(Rl ,Rh) and(R ′

l ,R
′
h) respectively, where the corresponding quark

masses on the latticeeare(am̃e
l ,am̃e

h) and(am̃′e
l ,am̃′e

l ). Expanding about the continuum limit,
(

m̃′e
l

m̃e
l

)

= lim
β→0

(

m̃′
l (β )

m̃l (β )

)

+dl (ΛQCDae)2 (2.2)

and similarly for the heavy quarks. Heredl vanishes as(Rl ,Rh) → (R ′
l ,R

′
h). Together with a

similar demonstration that the difference betweenRa/R′
a and unity can be neglected, this implies

(

Z̃′
l

Z̃l

)

= 1+dl Λ2
QCD

(

a(323)2−a(243)2) . (2.3)

For sufficiently close scaling trajectories,dl is small and theO(a2) term on the right can be dropped.
This observation allows us to fix the relation between 243 and 323 quark masses and lattice spacings
across the whole range of our data prior to performing the combined fit by using Zl , Zh andRa

determined above.

3. Combined fit strategy

We wish to perform a combined fit to both ensemble sets, using the values ofZl , Zh andRa

determined above to relate the quark masses between the lattices. The chiral/continuum fit forms
are obtained by performing a double-expansion in the quark masses and lattice spacing abouta= 0
and some general quark massesmm

l andmm
h . This gives forms which have the structure

A+Ba2+Cf (m̃f − m̃m
f )+D f (m̃f − m̃m

f )a
2+ . . . , (3.1)

where the indexf is summed overl andh. We choose a power counting whereby terms ofO(a2m)
and higher are neglected.

We obtain chiral/continuum fit forms by extending the expansion to partially-quenched masses
and takem̃m

l to be both the SU(2) chiral limit and also some non-zero mass point. With the power
counting defined above, the fit forms obtained by expanding about the chiral limit are the usual
NLO partially-quenched ChPT fit forms with an additionala2 coefficient. For example for the
(unitary) pion decay constant we obtain the form

fll = f
[

1+cf a
2] + f ·

{

8
f 2(2l4+ l5)χl −

χl

8π2 f 2 log
χl

Λ2
χ

}

, (3.2)

whereχl = 2Bml . We refer to these with the label ‘ChPT’. We also include finite-volume correc-
tions to the chiral logarithms in order to obtain a second ansatz which we label ‘ChPTfv’. Finally,
expanding about some unphysical quark mass and truncating atO(a2m) we obtain linear analytic
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Figure 2: Plots of 2m2
xy/(m̃x+m̃y) on the 323 ml = 0.004 ensemble, overlaid by the ChPT (left) and analytic

(right) fit curves. The data indicated by filled circular points was included in the fit and the heavier data points
indicated by unfilled square points were not. The ChPT fit curves associated with the heavier masses above
the cut do not well describe the data and cannot be seen withinthe plotted range.

fit forms (labelled ‘analytic’) of the form

fxy = C fπ
0 [1+Cf a

2]+
1
2

C fπ
1 (m̃x+ m̃y)+C fπ

2 m̃l . (3.3)

The heavy quark dependence is always modeled as a linear expansion about the physical strange
quark mass. Note that we do not expand around the SU(3) chiral limit as our previous analysis [3]
showed that NLO SU(3) ChPT poorly described our 243 data.

In the matching analysis in the previous section we defined the quantitiesmll , mhl andmhhh to
scale perfectly at a particular match point. Consider these quantities at quark masses ˜m (in physical
units) away from the match point mass ˜mmatch. Setting the expansion mass of the double-expansion
to m̃m= m̃matchwe find that scaling imperfections arise asa2(m̃−m̃match), which is neglected by our
power counting. As a result these quantities can be treated as artefact free and thea2 dependence
of their fit forms fixed to zero.

After performing a combined fit to the data, we match to the physical scaling trajectory by
finding the values ofml and mh (in physical units) that give continuum values formπ/mΩ and
mK/mΩ that are equal to their physical values, and the overall scale is set by fixingmΩ to its physical
value. This involves an elaborate iterative procedure which is describedin detail in ref. [2].

In the remaining sections we discuss some of the results of our combined chiral/continuum
analysis.

4. Evidence for chiral curvature

Figure 2 shows the ChPT and analytic fits overlaying the partially-quencheddata on the light-
est 323 ensemble. The values plotted are 2m2

xy/(m̃x+ m̃y), where the ratio is traditionally used to
enhance the visibility of chiral curvature in the data. Both fit forms describethe data well within
the range over which the fit was performed, but the ChPT form, unlike the analytic form, does
not continue to describe the heavier data above the mass cut. The apparent curvature in thelinear
analytic fit forms is an artefact of the plot format, arising from the ratio of thedata and the average
valence quark mass; within our data we observe no statistically significant curvature.

Evidence for the existence of chiral curvature can be found by analysing the consistency of
the analytic results with the predictions of Goldstone’s theorem. The partially-quenched analytic
fit form for the pion mass is

m2
xy =Cmπ

0 +
1
2

Cmπ
1 (m̃x+ m̃y)+Cmπ

2 m̃l . (4.1)
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Figure 3: Comparisons of the chiral extrapolations offπ (left) andBK (right) using both the ChPT and
analytic fit forms overlaying the data corrected to the continuum limit.

Goldstone’s theorem states that the pion mass vanishes as the unitary light quark mass ( ˜ml = m̃x =
m̃y) goes to zero, which implies thatCmπ

0 = 0. In practise we find thatCmπ
0 =−0.001(1), which is

completely consistent. However, Goldstone’s theorem also states that the pion mass should vanish
in the limit of vanishingvalencequark mass ( ˜mx = m̃y = 0), irrespective of the sea quark mass, and
thusCmπ

2 = 0. We findCmπ
2 = 0.43(8), which implies that chiral curvature must exist somewhere

above the partially-quenched chiral limit. Of course this may happen at much lower pion masses
than the physical mass, so we cannot rule out the validity of the analytic expansion for masses
mπ ≥ 135 MeV.

In figure 3 we show the chiral extrapolation of the pion decay constant in the continuum limit
using both the ChPT and analytic fit forms. The analytic prediction for the physical fπ is 126(2)
MeV, which is∼ 3.4% (2.2σ ) lower than the PDG value of 130.4(2). We obtain an estimate
of the finite volume corrections from the difference between the ChPTfv (fπ = 121(2)) and ChPT
( fπ = 119(2)) results, giving 2 MeV. With this correction the analytic result is borderline consistent
with the physical value. This implies only a small amount of chiral curvature can be exhibited in
fπ above the physical pion mass. The NLO ChPT prediction for the physicalfπ is however∼ 9%
(5.7σ ) too low, or 7.2% after finite-volume corrections are applied. This discrepancy is consistent
with the expected 5%−15% NNLO corrections, where these values are obtained by squaring the
typical separation of our data from the LO decay constantf (20%−40%). The evidence therefore
suggests that the chiral behaviour offπ is mostly linear in the region above the physical pion mass,
and that higher order terms in the chiral expansion are required to describe this behaviour.

5. Physical predictions for the decay constants

Although the analytic formulae describe the data surprisingly well and appear to give a result
for fπ that is more consistent with the physical value, there are strong theoreticalarguments for
chiral perturbation theory, and it may just be that higher order corrections are required to describe
physics in the simulated mass range. We therefore choose to compromise between the two ap-
proaches by taking the central value as the average of the ChPTfv and analytic results, and include
a chiral systematic error taken from the difference of these two results, thus covering both possibil-
ities. We also include an additional systematic for the finite volume effects taken,as above, from
the difference of the ChPTfv and ChPT results. In this scheme we find

f continuum
π = 124(2)(5)MeV (5.1)

f continuum
K = 149(2)(4)MeV (5.2)

( fK/ fπ)
continuum= 1.204(7)(25) , (5.3)
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where the quoted errors are statistical and systematic respectively.

6. Physical predictions for the quark masses

The quark masses determined in the combined fits procedure are renormalised in a ‘matching
scheme’ in which the renormalisation coefficient is unity on the 323 lattice andZl (Zh) for the light
(heavy) quark. In this scheme we find

m̃ud = 2.35(8)(9)MeV and m̃s = 63.7(9)(1)MeV . (6.1)
In order to convert these to the more conventionalMS-scheme, we first convert to an intermediate
lattice scheme and then run to the conventional 2 GeV using the non-perturbative lattice data. The
conversion toMS is then applied using perturbation theory at this higher scale.

The mass renormalisation factor in the lattice scheme is obtained from the renormalisation
coefficient of the projected, amputated scalar bilinear vertex in several variants of the Rome-
Southampton RI-MOM scheme [4]. In our previous analysis [5] we showed that a large systematic
error arises due to the use of ‘exceptional kinematics’, where the incomingand outgoing mo-
menta of the vertex are equal. This allows soft-momentum loops to occur even when the external
momentum is large. The vertex therefore receives large contributions from momenta below the
spontaneous chiral symmetry breaking scale, enhancing the effect of the breaking at these hard
momenta. For this analysis we therefore use non-exceptional ‘symmetric’ momentum configura-
tions, for which the incoming (p1) and outgoing (p2) momenta are different but obey the condition
p2

1 = p2
2 = (p1− p2)

2 = q2. This allows us to assign an exact scale (q2) to the vertex. We use two
different symmetric-MOM (SMOM) schemes [6] defined using different projection operators. We
also improve the determination of the renormalisation coefficients over the previous analysis by
using volume source propagators to calculate the vertices. This leads to a very large reduction in
the effects of gauge-field noise, vastly improving our statistical errors. The details of the determi-
nation of these renormalisation factors is discussed in greater detail in ref.[2]. Here we only quote
the results in theMS-scheme:

m̃MS
ud (2GeV) = 3.59(13)(16)MeV and m̃MS

s (2GeV) = 96.2(1.6)(2.1)MeV . (6.2)

where the systematic (second) error includes the NPR error.

7. Physical predictions forBK

Finally we obtain physical predictions for the neutral kaon mixing parameterBK using our
combined fitting procedure.BK is defined as the non-perturbative contribution toK̄0 → K0 mixing.
In combination with experimental results for the measure of indirect CP-violation ε and pertur-
bation theory for the hard-scattering kernel,BK can be used to measure the CKM matrix phaseδ
which parameterises all CP-violation in the Standard Model. It is calculated onthe lattice using an
effective four-quark operator

OVV+AA = (s̄γµd)(s̄γµd)+(s̄γ5γµd)(s̄γ5γµd) . (7.1)
normalised by the square of the〈0|A0|K0〉 matrix element:

BK =
〈K̄0|OVV+AA|K0〉

8
3〈K

0|A0|0〉〈0|A0|K̄0〉
. (7.2)

As before we apply our chiral/continuum power counting to expansions about the chiral limit and a
non-zero mass point, giving analytic, ChPT and ChPTfv fit forms. For example, the ChPT fit form
is

Bxh
K = B0

K

[

1+caa2+
c0χl

f 2 +
χxc1

f 2 −
χl

32π2 f 2 log

(

χx

Λ2
χ

)

]

, (7.3)

whereh labels to the (fixed) strange quark,x labels the partially-quenched light valence quark,
and χi = 2Bmi as before. AsBK is a renormalisation scheme dependent quantity the fits must
be performed to renormalised quantities. Here we useMS renormalisation coefficients calculated

6
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via five intermediate non-perturbative lattice schemes: the RI-MOM scheme and four symmetric
SMOM variants defined through the different choices for the projection operator of the four-quark
vertex and of the pseudoscalar bilinear vertex with which it is normalised. For the final result we
choose the lattice scheme for which theMS conversion factors are best described by perturbation
theory in the 2 GeV region at which results in this scheme are conventionally quoted. Here we
present only the preliminary result of this analysis,

BK(MS, 2GeV) = 0.546(7)stat(16)χ(3)FV(14)NPR, (7.4)

where the errors are the statistical error and the chiral, finite-volume and NPR systematics respec-
tively. The chiral error is determined as before from the difference ofthe analytic and ChPTfv
results. This difference is shown in figure 3, and is clearly much smaller thanfor fπ . More details
of these calculations and an in-depth discussion of the other systematic effects can be found in
ref. [7].

8. Conclusions

We have discussed and presented results from a simultaneous chiral/continuum extrapolation
of two domain wall fermion ensemble sets. We described a procedure in whichthe lattices are
matched first to an unphysical scaling trajectory running through the data,from which we obtain
the relation between the quark masses and the ratio of cutoff scales betweenthe lattices. We demon-
strated that our data behave very linearly and that very little room is availablefor chiral curvature
between our data and the physical point, certainly less than NLO ChPT suggests. However using
Goldstone’s theorem we showed evidence for the existence of chiral curvature on the pion mass in
the partially-quenched direction. We discussed our strategy for estimating the systematic error on
the chiral extrapolation and presented results for the decay constants, quark masses andBK .

In future work we intend to include results from our new domain wall DSDR lattice action [8]
which will enable us to simulate at significantly lower pion masses close to the physical point.
Coupling this with our recent advances [9] in the non-perturbative renormalisation techniques will
allow us to improve the systematic errors on all of the results presented in theseproceedings.

The author would like to thank all members of the UKQCD and RBC collaboration.
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