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We present a study ofD → K, lν semileptonic decays on the lattice which employs the HISQ ac-

tion for both the charm and the light quarks. We work with MILCunquenchedNf = 2+1 lattices

and determine the scalar form factorf0(q2). This form factor is obtained from a scalar current

matrix element that does not require any operator matching.We find f D→K
0 (0) ≡ f D→K

+ (0) =

0.747(19) in the chiral plus continuum limit and hereby improve the theory error on this quan-

tity by a factor of∼4 compared to previous lattice determinations. Combining the new the-

ory result with recent experimental measurements of the product f D→K
+ (0) ∗ |Vcs| from BaBar

and CLEO-c leads to a very precise direct determination of the CKM matrix element|Vcs|,

|Vcs| = 0.961(11)(24), where the first error comes from experiment and the second isthe lattice

QCD theory error.
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D to K semileptonic decays with HISQ action H. Na

1. Introduction

From a study ofD → K, lν semileptonic decays, one can calculate the form factorf+(q2 = 0).
One can also determine the CKM matrix element,|Vcs|, by combining theory and experimental
inputs. We continue to work on theD semileptonic decay project that was presented at the Lattice
2009 conference [1]. In this article, we present a brief summary of ourrecent results for theD to K
semileptonic decays, which are already published in Ref. [2]. So, for more detail, please see the
publication.

For this project, we useNf = 2+1 asqtad MILC gauge configurations with two lattice spac-
ings,a∼ 0.12fm “coarse” anda∼ 0.09fm “fine” ensembles. We apply the HISQ action for both the
charm and light valence quarks. For better statistics, we employ random wall sources. We develop
a new extrapolation method to go to the continuum and chiral limit, the so called “simultaneous
modifiedz-expansion extrapolation,” which allows us to extrapolate the form factorsfor the en-
tire q2 range. This method does not have the expansion problem which normal chiral perturbation
theory would have at largeEK .

To study the processD → K, lν one needs to evaluate the matrix element of the charged elec-
troweak current between theD and theK meson states,〈K|(Vµ −Aµ)|D〉. Only the vector current
Vµ contributes to the pseudoscalar-to-pseudoscalar amplitude and the matrix element can be writ-
ten in terms of two form factorsf+(q2) and f0(q2), whereqµ = pµ

D − pµ
K is the four-momentum of

the emitted W-boson.

〈K|Vµ |D〉 = f D→K
+ (q2)

[

pµ
D + pµ

K −
M2

D −M2
K

q2 qµ
]

(1.1)

+ f D→K
0 (q2)

M2
D −M2

K

q2 qµ

with Vµ ≡ ψ̄sγµΨc. As described below, we find it useful to consider also the matrix element of
the scalar currentS≡ ψ̄sΨc,

〈K|S|D〉 =
M2

D −M2
K

m0c−m0s
f D→K
0 (q2). (1.2)

In continuum QCD one has the PCVC (partially conserved vector current)relation and the vector
and scalar currents obey,

qµ〈Vcont.
µ 〉 = (m0c−m0s)〈S

cont.〉. (1.3)

In fact PCVC is the reason why the same form factorf D→K
0 (q2) appears in eqs.(1.1) and (1.2). On

the lattice it is often much more convenient to simulate with vector currentsψ̄Q1γµΨQ2 that are not
exactly conserved at finite lattice spacings even forQ1= Q2. Such non-exactly-conserved currents
need to be renormalized and acquire Z-factors. We are able to carry outfully nonperturbative
renormalization of the lattice vector current by imposing PCVC. In theD meson rest frame the
condition becomes,

(MD −EK)〈V latt.
0 〉Zt +~pK · 〈~V latt.〉Zs = (m0c−m0s)〈S

latt.〉. (1.4)

We have checked the feasibility of this renormalization scheme and extracted preliminary Zt

andZs values for the test case ofDs→ ηs, lν in Ref.[1]. However, here we focus on the form factor
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D to K semileptonic decays with HISQ action H. Na

f+(q2) just atq2 = 0, since this is all that is needed to extract|Vcs|. We do this by exploiting the
kinematic identityf+(0) = f0(0), and concentrating on determining the scalar form factorf0(q2)

as accurately as possible. The best way to proceed is to evaluate the hadronic matrix element of the
scalar current rather than of the vector current. From eq.(1.2) one then has,

f D→K
0 (q2) =

(m0c−m0s)〈K|S|D〉

M2
D −M2

K

. (1.5)

The numerator on the right-hand-side is a renormalization group invariant combination. This is
true even in our lattice formulation, because we use the same relativistic action for both the heavy
and the light valence quarks. Moreover, eq. (1.5) allows a lattice determination of f0(q2) and hence
also of f+(0) = f0(0) without any need for operator matching. Using eq. (1.5) and going to the
continuum limit is straightforward, because our action is so highly improved even for heavy quarks.

2. Simultaneous modifiedz-expansion extrapolation

The continuumz-expansion method is a well known model-independent parameterization
method for semileptonic decay form factors. One can write the form factor as,

f0(q
2) =

1
P(q2)Φ0(q2, t0)

∞

∑
k=0

ak(t0)z(q
2, t0)

k, (2.1)

whereP(q2) andΦ0(q2, t0) are given functions from analyticity properties of the form factors.
Thez-expansion method works well for individual ensembles, however we liketo modifying

the fit ansatz to enable extrapolation to the physical limit. All kinematic properties that depend
on q2 are absorbed byP,Φ0, and z. A natural way to distinguish between ensembles is to let
ak → ak ∗Dk, whereDk contains the light quark mass and lattice spacing dependence as shown
below withkmax= 2.

f0(q
2) =

1
P(q2)Φ0

(

a0D0 +a1D1z+a2D2z2) (2.2)

×(1+b1(aEK)2 +b2(aEK)4),

where,

Di = 1+ci
1xl +ci

2δxs+ci
3xl log(xl )+di(amc)

2 (2.3)

+ei(amc)
4 + fi

(

1
2

δM2
π +δM2

K

)

.

In eq. 2.3, we put typical analytic terms for light valence (xl andδxs terms) and sea quark mass
(δMπ andδMK terms) dependence. For the chiral logs, we only include up/down quark contri-
butions. The strange quark chiral logs are close to a constant that can be absorbed into theai ’s.
There are two distinct sources of lattice spacing dependence.(amc)

2 and(amc)
4 terms are due to

the heavy quark discretization error, and(aEK)2 and(aEK)4 terms are introduced to estimate the
discretization errors due to finite momentum. Since we want theaiDi to be independent of the
momentum, theaEK terms are placed separately outside thez-expansion. We include lattice spac-
ing dependent terms up to fourth power, however we tested with even higherterms and confirmed
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Figure 1: Chiral/continuum extrapolation off0(q2) versusE2
K from the modifiedz-expansion ansatz. The

data points are coarse (left) and fine (right) lattice points. Three individual curves and the extrapolated band
are from a fit to all five ensembles.

that the higher terms are negligible. We have carried out simultaneous fits to allthe data using the
above ansatz and find that very good fits are possible. Fig. 1 shows the resulting fit curves for each
ensemble and the chiral/continuum extrapolated curve with its error band forf0(q2) versusE2

K (we
show separately the coarse and fine ensembles in order to avoid too much clutter). On the left panel
of Fig. 2 we showf0(q2 = 0) for the five ensembles and in the physical limit. One sees that within
errors this quantity shows little light quark mass dependence and a∼ 1.3% lattice spacing depen-
dence. We also test the chiral/continuum extrapolation with partially quenchedchiral perturbation
theory (PQChPT). This traditional method gives results in very good agreement with the modified
z-expansion extrapolation method (see the right panel of Fig. 2).

3. f+(0), |Vcs|, and unitarity tests

3.1 f+(0) = f0(0)

From the simultaneous modifiedz-expansion extrapolation method, we findf+(0) = 0.748±
0.019 in the physical limit forD0 → K−lν , and f+(0) = 0.746±0.019 forD+ → K

0
lν . We take

an average over these two channels and our final result in the physicallimit becomes,

f D→K
+ (0) = 0.747±0.011±0.015. (3.1)

The first error comes from statistics and the second error represents systematic errors. Table 1
summarizes the error budget. One sees that the largest contributions to the total error come from
statistics followed by(amc) and(aEK) extrapolation errors.

In order to calculate the form factor, we have to put in meson masses from experiment and also
from our lattice simulations. For example, we need experimentalD, K, andπ meson masses to get
the form factor at the physical limit, andEK , D, andK meson masses from the lattice calculations
are used to fit at non-zero lattice spacing. In Table 1, “Input meson mass” refers to errors induced
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Figure 2: (left) f0 at q2 = 0 for the five ensembles and in the physical limit. (right) Comparisons off0(q2)

in the physical limit from thez-expansion and the ChPT extrapolations.

Type Error

Statistical 1.5 %
Lattice scale (r1 andr1/a) 0.2 %

Input meson mass 0.1 %
Light quark dependence 0.6 %

Strange quark dependence0.7 %
Sea quark dependence 0.4 %

amc extrapolation 1.4 %
aEK extrapolation 1.0 %

Finite volume 0.01 %
Charm quark tuning 0.05 %

Total 2.5 %

Table 1: Total error budget.

from these input meson masses. In the fit ansatz, eq. 2.3, there are light quark (ci
1 andci

3), strange
quark (ci

2), and sea quark dependent terms (fi). Each systematic error due to these terms is shown
on the fourth to sixth line in the table. Lattice spacing dependence errors areestimated separately
for (amc)

n and(aEK) j type contributions.
In the fit ansatz,xl log(xl ) is the most infrared sensitive term. We calculate the pion-tadpole

loop integral both at finite volume and at infinite volume and compare these to estimate the finite
volume effects. For the charm quark mass tuning error, we calculate the form factor with a different
charm quark mass,amc = 0.629, on the C3 ensemble, and compare with the result with the tuned
amc = 0.6235.

In their papers both BaBar [4] and CLEO-c [5] have converted their measurements off+(0)∗

|Vcs| into results for f+(0) using values for|Vcs| fixed by CKM unitarity. For this CLEO-c uses
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Figure 3: (left) Comparisons off0(q2 = 0) with other calculations and experiments. (right) Comparisons of
our new|Vcs| with values in the PDG [6].

the 2008 PDG CKM unitarity value of|Vcs| = 0.97334(23) and obtainsf D→K
+ (0) = 0.739(9) and

BaBar uses|Vcs| = 0.9729(3) leading to f+(0) = 0.737(10). On the left panel of Fig. 3 we plot
our result, eq.(3.1), together with earlier theory results from the lattice [3] and from a recent sum
rules calculation and with the BaBar and CLEO-c numbers. One sees the very welcome reduction
in theory errors which are now small enough so that the agreement between theory and experiment
already provides a nontrivial indirect test of CKM unitarity.

3.2 Direct Determination of |Vcs| and unitarity tests

As experimental input we takef+(0)∗ |Vcs| = 0.719(8) from CLEO-c [5] andf+(0)∗ |Vcs| =

0.717(10) from BaBar [4]. For the latter we have multiplied BaBar’s quotedf+(0) with their
quoted CKM unitarity value for|Vcs|. Averaging between the two experiments we usef+(0) ∗

|Vcs| = 0.718(8) together with eq.(3.1) to extract|Vcs|. One finds,

|Vcs| = 0.961±0.011±0.024, (3.2)

in good agreement with the CKM unitarity value of 0.97345(16) [6]. The first error in (3.2) is from
experiment and the second from the lattice calculation of this article. This is a very precise direct
determination of|Vcs|, made possible by the many advances in lattice QCD that are described in
this article together with the tremendous progress in recent experimental studies ofD semileptonic
decays [4, 5]. On the right panel of Fig. 3 we plot several previous direct determinations of|Vcs|

from the 2010 PDG [6] together with (3.2) and the CKM unitarity value.

Using the new value of|Vcs|, eq.(3.2), and the current PDG values|Vcd| = 0.230(11) and
|Vcb| = 0.0406(13) one finds,

|Vcd|
2 + |Vcs|

2 + |Vcb|
2 = 0.978(50) (3.3)
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for the 2nd row. And similarly for the 2nd column, with|Vus| = 0.2252(9) and|Vts = 0.0387(21)
one gets,

|Vus|
2 + |Vcs|

2 + |Vts|
2 = 0.976(50). (3.4)

4. Discussion

We have carried out a successful calculation forD → K, lν semileptonic decay form factors
using the HISQ action for both the charm and light quarks withNf = 2+ 1 asqtad MILC gauge
configurations. The total error forf+(0) is estimated here to be 2.5%. This is a factor of four
times smaller than in the previous lattice calculation of Ref. [3]. This was achievable because of
applying several new methods and techniques. We employ the HISQ action for both charm and
light quark actions and a scalar current rather than the traditional vectorcurrent. Because of these
new methods, we obtain results with smaller discretization errors and no operator matching. We
also developed the modifiedz-expansion extrapolation method, which is crucial to decrease errors
due to the discretization, chiral / continuum extrapolation and parameterization of the form factor.
In order to decrease statistical errors, we apply random-wall sourcesand perform simultaneous fits
with multiple correlators andT ’s. If we compare with the error budget of Ref. [3], then we see the
statistical errors reduced from 3% to 1.5% and the extrapolation and parameterization errors from
3% to 1.5% as well. The biggest improvement is in the discretization errors. Thetotal discretization
errors have now been reduced from 9% to 2%. We note that the conceptof the discretization
errors is different in Ref. [3] compared to ours. In Ref. [3], they estimate the discretization errors
by power counting, since they calculate at only one lattice spacing. Here, however, we actually
perform continuum extrapolations with correction terms for the discretizationeffects. As a result,
we do not have discretization errors per se, but instead extrapolation errors due to higher order
correction terms.

Again, this is a short version of Ref. [2]. For more detail and full discussion, please see the
publication.
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