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1. Introduction

Field theories with a complex action are difficult to treat nonperturbativetabee the weight
e S=|e S/€? in the partition function is not real. Standard numerical approaches tmased
probability interpretation and importance sampling will then typically break deviich is com-
monly referred to as the sign problem. This is a particularly pressing issuereg#rds to the
determination of the phase diagram of QCD in the plane of temperature amicethpotential. A
comprehensive review can be found in R§f. [1]

Complex Langevin dynamics offers the possibility of a general solution to tbislgm [2,[B,
A]. In this formulation, fieldgp are supplemented with a fictional time-like dimensi@n.and the
system evolves according to the stochastic equation
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In the case of a complex action, the fields aceplexifiedas ¢ — @R +ig', and the Langevin
equations read (using real noise)
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where the noise is Gaussia(ny(d)) = 0, (Nx(3)ny(3')) = 28x0(3 — ¥’). In the limit that

3 — o noise averages should become equal to quantum expectation values.tt&iraction is
used to compute the drift terms, but not for any importance sampling, comaleyelin dynamics
can potentially avoid the sign problem.

2. XY model

Motivated by previous studies of complex Langevin dynamics for QCD in da¥dense
limit [$], we consider the XY model at finite chemical potentig! [6]. This theisrglosely related
to the Bose gas, for which complex Langevin dynamics is known to work Hef8 The XY
model at finite chemical potential has the action
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where 0< ¢ < 21t. The theory is defined on a lattice of volufle= N;NZ, with periodic boundary
conditions. The chemical potential is coupled to the Noether charge assbuwidh the global
symmetry,¢x — @+ a, and is introduced in the standard wdly [9]. The action sati§igs) =
S(—u*) and at vanishing chemical potential the theory is known to undergo a pisasition at
Bc = 0.45421 [ID] between a disordered phase wBen f; and an ordered phase whgn> f3..
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The drift terms in the complex Langevin equations are given by
KZ=—BY [sin(@ — @) cosHa — @y — Hdyo) (2.2a)
Vv
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By choosing an imaginary chemical potentie iy, the action becomes purely real and standard
algorithms can be applied (here real Langevin dynamics is used). Theibehatu? > 0 can then
be assessed by continuation of the behaviour found & 0.

3. Adaptive stepsize

In order to integrate the equations, the Langevin time needs to be discreti2ed an. When
real Langevin dynamics can be employed (e.g. whér< 0), the drift terms are bounded and a
fixed stepsize is sufficient. However, in the case of complex Langeviardigs, the drift terms are
unbounded (see Ef. P.2) and numerical instabilities are encounteredhei®rces become large.
These cause the system to diverge along “runaway” solutions.

This can be cured by adjusting the stepsize when the configuration appsoa divergent
trajectory [1]L]. The adaptive stepsize is implemented by monitoring the maxincal fierm,

)

Kmax — m;ax\ KR(n) +iK}(n)

and at each update defining the stepsize to be

sn:min{g,gmmas}. (3.1)

max
Kn

Here ¢ is the desired target stepsize aiti"®) is either precomputed or computed during the
thermalisation period.

All observables are analyzed over equal periods of Langevin time aighted with the step-
size to ensure correct statistical significance,

_ > n€nOn
Ynén

with the total number of updates such tlyate, is constant.

While with a fixed stepsize it is practically impossible to generate a thermalisedomatfon,
we found that with an adaptive stepsize instabilities are completely eliminatedsanhe result
applies to heavy dense QCPJ11].

(O) , (3.2)

4. World line formulation

A useful feature of the XY model is that it can be rewritten exactly withouga problem in
terms of world lines. This dual formulation can be efficiently simulated using ravadgorithm
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[Ld]. The partition function can be expanded into a sum over Besselifuns using the identity

S 1 (B, (4.1)

k=—o00

which allows the partition function to be written as

Z= / Dge 5= [ k. (B H*05 (z[kx,v - kxo,v]> : (4.2)
K XV %
The sum overk] indicates a sum over all possible world line configurations. The ac{®n=
_B%, can be computed from

(S = B<XZV[ . (B) B]>WI, (4.3)

where the average is taken over world line configurations.

5. Comparison

To assess the validity of the results from complex Langevin simulations, agjarohg point
is to compare with results from imaginary chemical potential simulations®at 0. In Fig.[1
it can be seen that at large couplifig= 0.7 the action density is continuous over the boundary
at u?2 = 0 between real and complex Langevin dynamics. The resufs-a0.3 are in contrast
to this. Here, the action density between the two regions are not in agreesrentplified by
the fact that ap1? = 0 the two simulations give different results 8 /Q. These observations are
corroborated by the results from the world line formalism, which are comsisiéh the predictions
from imaginary chemical potential calculations.
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Figure 1. Real part of the action density aroupd ~ 0 at low and high3, with the world line result for
comparison. The lattice volume i$.8\ote that with an imaginary chemical potential the thesrgériodic
underg — @+ 211/N; which yields a Roberge-Weiss transitiontat= 11/N;, similar to what is found in
QCD.

In order to investigate this further, we have studied a large number ofngteavalues in the
B-u plane. The disagreement between complex Langevin dynamics (cl) atdi limer formal-
ism (wl) can be quantified by the relative difference between the expectailaes of the action,
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according to

As— Sw =S (5.1)

(Swi
This is plotted in Fig[]2 in thg8-u plane, with the phase boundary taken from REf] [10]. It can
be seen that the breakdown of complex Langevin dynamics is highly dedebdith the phase
boundary of the theory: complex Langevin dynamics is in agreement in tlexeml phase but
begins to break down at the boundary and is in complete disagreement isdh#eded phase.
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Figure2: Colour plot of relative differencASbetween action density as computed using complex Langevin

dynamics and world line formulation. Also shown is the pHasendaryS.(u) between ordered phase (large
B) and disordered phase (sma)l.

6. Diagnostics

To identify the manner in which complex Langevin dynamics makes the transitionvork-
ing correctly (at largg3) to failing (at small), a good test is to compare distributions of observ-
ables computed at = 0 using different initial conditions. In the absence of a chemical potential,
if the imaginary parts of the complexified fields are initially zepb= 0, the forces in the imagi-
nary direction will be zero always, and therefore the configuration eftain constrained in the
manner of real Langevin dynamics. This is calledodd start Alternatively, the imaginary parts
of the fields may be initialised randomly according to a Gaussian distribution, edtietstart

A good quantity for making such comparisons is the maximal fé&¢®&<. When¢' = 0, it
will be constrained such th&™& < 63. With complexified dynamics, there is no upper bound
and the drift terms can fluctuate over several orders of magnifudle [A Hig. [3 distributions of
the maximal force term for high and lo@/ using hot and cold starts are plotted.

In the absence of a chemical potential, the difference in behaviour betvee@nd cold starts
is clear. At large3 the complex Langevin (hot start) configurations are driven to the sanikbequ
rium distribution as the real Langevin (cold start) ones. The drift termbamaded by B in both
cases. However, at smdl the drift terms from the hot start configurations fluctuate over several
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Figure 3. Distributions of K™ ysing hot and cold starts fqt = 0 (top) andu = 0.1 (bottom), lattice
volume &, at two 3 values. Note the different vertical scales.

orders of magnitude, whereas the drift terms from the cold start arediedury . Since the cor-
responding result for the action density is incorrect, this indicates thatlegrbangevin dynamics

is not reaching a correct equilibrium distribution. At nonzero chemictmial, u = 0.1, the dis-
tributions coincide because, even in the case of a cold start, the chentieatigloforces the field
into the complexified space. Consequently, this problem is not caused liyittheconditions,

but by the dynamics itsel{]6]. At largg, there are occasional occurrences of large drift terms
(Fig.[3(d), inset), but the distribution is still dominated by the peakBatAt small 3, this peak is
absent and the maximal drift terms are substantially larger [[Fid. 3(c)).

7. Summary

Complex Langevin dynamics offers the potential for a general solution teigfmeproblem.
The XY model at finite chemical potential was studied using complex Langeardics and
compared to results obtained with the alternative world line formulation, whigleésdf the sign
problem. It is necessary to integrate the stochastic equations using a dystapsize, in order to
eliminate the problem of runaway solutions that appear when using a fixesizge The action
density (S)/Q was computed in the region aroupd ~ 0. A comparison between results from
using an imaginary chemical potentigl < 0, with those ap? > 0 shows that complex Langevin
dynamics gives the correct result at lafgdout an incorrect result at smgldl. An analysis of the
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relative difference between the action densities obtained using complgetiandynamics and

the world line formalism over a wide region in tifleu plane shows that the failure of complex
Langevin dynamics is strongly correlated with the phase of the theory. lortteved phase at
B > B. complex Langevin dynamics works correctly, but it fails in the disordetete3 < ..

To investigate this difference further, we computed the distribution of the mafimte term
KM&X at u = 0 using two different initial conditions in which the imaginary parts of the fields
were set randomly (hot) or to zero (cold). When complex Langevin dyrsayiétds the correct
result (at largeB), the configuration from the hot start is driven to the same distributionces fr
the cold start. However, where it fails (at sm@ll, the distributions do not match. We conclude,
therefore, that the failure of complex Langevin dynamics is not causdabebgign problem, but
rather by an incorrect exploration of configuration space. This ceimrius supported by results
that indicate that complex Langevin dynamics can evade the sign problemgséefs.[[b[]7, 32].
An investigation into the incorrect exploration of complexified field spacerigeatly in progress,
building on the ideas put forward in Ref.]13].

Acknowledgments

Discussion and collaboration with lon-Olimpiu Stamatescu and Erhard Seileeaslygap-
preciated. This work has been supported in part by the EU Integrafesstinicture Initiative
HadronPhysics2 and STFC.

References

[1] P. de Forcrand, POBAT 2009 (2009) 010 [arXiv:1005.0539 [hep-lat]].
[2] G. Parisi, Phys. Lett. B31 (1983) 393.

[3] J. R. Klauder, Stochastic quantization, in: H. MitterBCLang (Eds.), Recent Developments in
High-Energy Physics, Springer-Verlag, Wien, 1983, p. 3bBhys. A: Math. Geril6, L317-319
(1983); Phys. Rev. &9, 2036-2047 (1984).

[4] P. H. Damgaard and H. Huffel, Phys. Reps2 (1987) 227.
[5] G. Aarts and I. O. Stamatescu, JHE809 (2008) 018 [arXiv:0807.2597 [hep-lat]].
[6] G. Aarts and F. A. James, JHERO8 (2010) 020 [arXiv:1005.3468 [hep-lat]].
[7] G. Aarts, Phys. Rev. Letfl02 (2009) 131601 [arXiv:0810.2089 [hep-lat]].
[8] G. Aarts, JHEF0905 (2009) 052 [arXiv:0902.4686 [hep-lat]].
[9] P. Hasenfratz and F. Karsch, Phys. Lettl® (1983) 308.
[10] D. Banerjee and S. Chandrasekharan, Phys. R&L (2010) 125007 [arXiv:1001.3648 [hep-lat]].

[11] G. Aarts, F. A. James, E. Seiler and |. O. Stamatescus.Rlett. B687 (2010) 154 [arXiv:0912.0617
[hep-lat]].

[12] G. Aarts and K. Splittorff, JHEROO8 (2010) 017 [arXiv:1006.0332 [hep-lat]].
[13] G. Aarts, E. Seiler and I. O. Stamatescu, Phys. Re®1[2010) 054508 [arXiv:0912.3360 [hep-lat]].



