PROCEEDINGS

OF SCIENCE

Staggered fermions simulations on GPUs

Claudio Bonati*
Dipartimento di Fisica, Universita di Pisa and INFN, Largo Pontecorvo 3, I-56127 Pisa, Italy.
E-mail: claudio.bonatiQpi.infn.it

Guido Cossu
KEK Theory Center, 1-1 Oho, Tsukuba-shi, Ibaraki 305-0801, Japan.

E-mail: cossu@post .kek. jp

Massimo D’Elia
Dipartimento di Fisica, Universita di Genova and INFN, Via Dodecaneso 33, 16146 Genova,

Italy.
E-mail: massimo.delia@ge.infn.it

Adriano Di Giacomo
Dipartimento di Fisica, Universita di Pisa and INFN, Largo Pontecorvo 3, I-56127 Pisa, Italy.
E-mail: digiaco@df.unipi.it

We present our implementation of the RHMC algorithm for staggered fermions on Graphics Pro-
cessing Units using the NVIDIA CUDA programming language. While previous studies exclu-
sively deal with the Dirac matrix inversion problem, our code performs the complete MD trajec-
tory on the GPU. After pointing out the main bottlenecks and how to circumvent them, we discuss

the performance of our code.

The XXVIII International Symposium on Lattice Field Theory
June 14-19,2010
Villasimius, Sardinia Italy

“Speaker.

(© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/


mailto:claudio.bonati@pi.infn.it
mailto:cossu@post.kek.jp
mailto:massimo.delia@ge.infn.it
mailto:digiaco@df.unipi.it

Staggered fermions on GPUs Claudio Bonati

1. Introduction

In recent years the video game market developments compelled graphic processing units
(GPUs) manufacturers to increase the floating point calculation performance of their products, by
far exceeding the performance of standard CPUs. The architecture evolved toward programmable
many-core chips that are designed to process in parallel massive amounts of data. These devel-
opments suggested the possibility of using GPUs in the field of high-performance computing as
low-cost substitutes of more traditional CPU-based architectures.

The introduction of GPUs in lattice QCD calculations started with the seminal work of Ref. [1],
in which the native graphics APIs were used, but the real explosion of interest in the field followed
the introduction of NVIDIA’s CUDA (Compute Unified Device Architecture) platform, that effec-
tively disclosed the field of GPGPU (General Purpose GPU [2]).

Previous studies on the application of GPUs to lattice QCD calculations were mainly aimed
at using them together with the standard architectures in order to speed up some specific steps,
typically the expensive Dirac matrix inversion. Our intent is to use GPUs in substitution of the usual
architectures, actually performing the whole simulation by them. To achieve this result we found
simpler to write a complete program from scratch instead of using existing software packages', in
order to have a better control of all the steps to be performed and ultimately transferred to the GPU.
Our implementation uses NVIDIA’s CUDA platform together with a standard C++ serial control
program running on CPU.

2. The algorithm

To simulate Ny flavours of staggered fermions the Rational Hybrid Monte Carlo (RHMC) al-
gorithm, introduced in [3], has become the standard choice. We used standard (i.e. non-improved)
staggered fermions and, to speed-up the simulations, the following common tricks were imple-
mented

e even/odd preconditioning
e multi-step integrator (action divided in gauge and fermion part)
e improved integrator (second order minimum norm)

e multiple pseudo-fermions to reduce the fermion force magnitude and increase integration
step size

o different rational approximations and stopping residuals for Metropolis step and Molecular

Dynamic (MD)

3. A GPU scratch

NVIDIA GPUs are massively parallel computing elements, composed of hundreds of cores
(called streaming processors) grouped into multiprocessors. The typical architecture of a modern
NVIDIA graphic card is outlined in Fig. 1.

1On earlier stage we wrote a staggered version of JLab’s Chroma working on GPUs.
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Figure 1: Architecture of a modern NVIDIA graphics card.

Three different storage levels are present: primary storage is provided by the device memory,
which is accessible by all multiprocessors but has a relatively high latency. Within the same multi-
processor, cores have access to local registers and to shared memory, which is shared between the
threads of the multiprocessor and it is orders of magnitude faster than device memory, being very
close to the computing units. While the total amount of device memory is of order of GBs, the
local storage is only 16KB both for the registers and for the shared memory?, so that it is typically
impossible to use just these local fast memories. The latency time of the device memory can be
hidden by having a large number of threads in concurrent execution, so when data are needed from
device memory for some threads, the ones ready to execute are immediately sent to computation.
The highest bandwidth from device memory is achieved when a group of 16 threads accesses a
contiguous memory region (coalesced memory access), because its execution requires just one in-
struction call, saving a lot of clock-cycles. This will be crucial in the following, when discussing
the storage model for the gauge configuration.

Double precision capability was introduced with NVIDIA’s GT200 generation, the first one
specifically designed having in mind HPC market, and by now there is only a factor 2 between the
peak performance in single and double precision. In Tab. 1 the specifications of the GPUs used in
this work are reported.

Communications between the GPU and the CPU host are settled by a PCI express bus, whose
typical bandwidth is SGB/s, to be compared with the GPU internal bandwidth between device
memory and cores of order 100 GB/s. This is clearly the main bottleneck in most of GPU ap-

GPU Cores | Bandwidth | Gflops (peak) | Gflops (peak) | Device Memory
GB/s single double GB

Tesla C1060 240 102 933 78 4

Tesla C2050/2070 | 448 144 1030 515 3/6

Table 1: Specifications of the NVIDIA cards used in this work.

2For NVIDIA Tesla cards 10 series. The 20 series has 64KB of on-chip memory that can be partitioned as shared
and L1 cache.
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Figure 2: Gauge field storage model: the element ;;(k) of the link k is given by u;;(k) = b;;(k) +cij(k). bjj
and ¢;; are respectively the most and the less significant bits of u;;.

plications. We thus decided to copy the starting gauge configuration (and momenta) on the device
memory at the beginning of the simulation and to perform the complete update on the GPU, instead
of using it just to speed up some functions and transferring gauge field back and forth between host
and device memories.

In our implementation of the Dirac kernel a different thread is associated to every (even) site in
the fermion update and to every link in the gauge update, so that different treads do not cooperate.
Shared memory is thus used just as a local fast memory. This setup is forced by the high ratio
between data and floating point operations per kernel.

4. Precision issues

We will now address the issues related to the use of double precision. The main drawback of
double precision is clear from Tab. 1: single precision floating point arithmetic always outperforms
the double one, although in the Fermi architecture the double precision penalty was significantly
reduced. Another motivation to prefer the single precision is to speed up memory transfers because
lattice QCD calculations are typically bandwidth limited.

Nevertheless double precision appeared to be necessary in the evaluation of the action for the
Metropolis step to be performed at the end of a MD trajectory, which guarantees the correctness
of the RHMC algorithm (see also Sec. 6). Because of that the first and the last Dirac inversions
are performed in double precision, while the inversions needed in the fermion force calculation
are in single precision. The update of the gauge field is performed in single precision and double
precision is used only in the reunitarization.

Another important feature that is necessary for the algorithm to be exact is the reversibility of
the trajectories [4]. Since the gauge updates use only single precision we can expect reversibility
to be valid only up to single precision and this is indeed the case: the magnitude of the reversibility
violation for degree of freedom is measured to be of order 5 x 107°.

5. Memory allocation scheme

We noted previously that a correct allocation scheme is of the utmost importance in order to
efficiently use the device memory. For staggered fermions, the storage of the gauge configuration
is the most expensive one, so we will concentrate on this. Similar techniques can be used also for
the momenta and the pseudo-fermions storage.
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Lattice Bandwidth GB/s | Gflops

4% 16> | 56.84+0.03 49.314+0.02
32 %323 | 64.091+0.002 | 55.597+0.002
4%x48% | 69.94+0.02 60.67 £0.02

Table 2: Staggered Dirac operator kernel performance figures on a C1060 card (single precision).

As stated before, QCD calculations on GPU are typically bandwidth limited and so it is con-
venient not to storage all the elements of an SU (3) matrix (18 real numbers), but to use a represen-
tation in terms of fewer parameters. In this way we can reduce the amount of memory exchange at
the expense of increasing the computational complexity. The additional calculations do not intro-
duce significant overhead, actually they are negligible compared to the memory transfers. We used
a 12 real number representation: only the first two rows are stored, while the third is reconstructed
on fly.

Since in the Metropolis step the inversion of the Dirac matrix in double precision is required,
we need to store a double precision gauge configuration, although in most of the calculations it
will be used just as a single precision one. In order not to waste bandwidth and device memory,
it is useful to write a double precision number a by using two single precision numbers b and c:
b is defined by the 32 most significant bits of a, while ¢ stores the 32 less significant ones. In C
language this amounts to

b= (float)a
¢ = (float)(a — (double)b)

When only single precision is required we can just use b instead of a, otherwise we have two
possible choices: to use b and c directly, effectively avoiding the explicit use of double precision
arithmetic (see e.g. [5]), or to reconstruct the double precision number a to be used in calculations.
We implemented this last method, which is expected to be more efficient on double precision
capable hardware.

To get coalesced memory accesses it is crucial for blocks of thread in execution to use contigu-
ous regions of device memory. This behaviour is maximized if we adopt the storage model shown
in Fig. 2; the use of texture memory is a further improvement to reduce the effects of imperfect
mMemory accesses.

The performance of the Dirac operator in single precision which is obtained by means of this
storage scheme is shown in Tab. 2. From these data it is clear that the main bottleneck is the
bandwidth: while using 60 — 70% of the bandwidth, only the 5 — 6% of the peak performance is
reached.

6. Inverter

The inversion of the Dirac operator in lattice QCD simulations is usually performed by using
Krylov space solvers; for staggered fermions the optimal choice is the simplest one of this class of
solvers: the Conjugate Gradient (CG) algorithm.
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In all Krylov space solvers the approximate solution and its estimated residual are calculated
recursively. While in exact arithmetic the estimated residual is exactly the residual of the approxi-
mate solution, in finite precision this is no more the case. The attainable accuracy at fixed precision
can be estimated [6] and for a single precision Dirac inversion a typical value for the minimum
true residual is 1072 — 1073, so we need double precision to perform the inversions related to the
Metropolis step.

In standard Krylov solvers this problem can be overcome by using the residual replacement
strategy: sometimes the true residual is explicitly calculated in double precision and the algorithm
is restarted. With this method it is possible to obtain reliable results, as with double precision
calculations, but using almost always single precision arithmetic. Residual replacement methods
are well understood theoretically [7] and have been successfully applied to QCD calculations on
GPUs [8]. However, in RHMC we need Krylov solvers for shifted systems (see e.g. [9]), whose
starting solution has to be the null one, thus preventing the restarting of the algorithm. For this
reason the Dirac inversions in the Metropolis step have to be performed completely in double
precision.

7. Performance

In Fig. 3 the RHMC update time on different architectures is shown for two values of the
bare quark masses (am = 0.01335,1.0). For both the mass values the scaling with the size of
the lattice is good. In fact it is a characteristic feature of GPUs that increasing the lattice size
improves the computational efficiency, as seen also in Tab. 2; this happens because with large
lattices internal latencies are hidden more effectively. Time gains for Tesla C1060 and C2050 are
shown in Tab. 3 and Tab. 4; particularly impressive is the comparison with the results obtained by
using an apeNEXT crate.

8. Conclusions

The extremely high computation capabilities of modern GPUs make them attractive platforms
for high-performance computations. Previous studies on lattice QCD applications have been de-
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Figure 3: Run times on different architectures. For the Opteron and Xeon runs a single core was used.
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high mass low mass ‘
spatial size 32|48 |64 | 16 | 32 | 48 |
Opteron (single core) | 65 | 75 | 75 | 40 | 50 | &5
Xeon (single core) 50|50 |50 | 15]25| 30
apeNEXT crate ~3 ~1

Table 3: NVIDIA C1060 time gains over CPU and apeNEXT.

high mass low mass ‘
spatial size 32 ‘ 48 ‘ 64 ‘ 16 ‘ 32 ‘ 48 ‘
Opteron (single core) | 115 | 130 | 140 | 65 | 75 | 140
Xeon (single core) 85 |85 | 100 | 30|40 |50
apeNEXT crate ~6 ~2

Table 4: NVIDIA C2050 time gains over CPU and apeNEXT (same code as for C1060, no specific C2050
improvement implemented).

voted almost exclusively to the Dirac matrix inversion problem. We have shown that it is possible to

use GPUs to efficiently perform a complete simulation, without the need to rely on more traditional

architectures.
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