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Understanding nuclear effects in parton distribution functions (PDF) is an essential component

needed to determine the strange and anti-strange quark contributions in the proton. In addition

Nuclear Parton Distribution Functions (NPDF) are critically important for any collider experi-

ment with nuclei (e.g. RHIC, ALICE). Here two next-to-leading orderχ2-analyses of NPDF are

presented. The first uses neutral current charged-lepton(ℓ±A) Deeply Inelastic Scattering (DIS)

and Drell-Yan data for several nuclear targets and the second uses neutrino-nucleon DIS data. We

compare the nuclear corrections factors (FFe
2 /FD

2 ) for the charged-lepton data with other results

from the literature. In particular, we compare and contrastfits based upon the charged-lepton DIS

data with those using neutrino-nucleon DIS data.
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1. Introduction

Parton distribution functions (PDFs) are extremely important in high energy physics as they
are needed for the computation of reactions involving hadrons. For this reason various groups
present and update precise global analyses of PDFs for protons [1,2, 3, 4] and nuclei [5, 6, 7].
PDFs are non-perturbative objects determined by experimental input andthe data come from dif-
ferent processes such as the Deep Inelastic Scattering (DIS), Drell-Yan (DY) and jet production. A
lot of data is extracted from free protons but there is a large share whichcomes from analysis of
data on nuclear targets. Most prominently, the neutrino DIS on heavy nuclei is proving to be very
important for precise determination of the flavor components of the PDFs andit gives the most
precise information on the strange quark PDF. The knowledge of the strange quark PDF has an
impact on the precision ofW andZ boson measurements at the LHC. Data taken on nuclear targets
are included in the proton analysis using the nuclear correction factors which are very often based
on a specific model [8]. The other option is to use the data on nuclear targetsand to extract from
them the nuclear parton distribution functions (NPDFs) in order to construct the nuclear correction
factors based on experimental input. NPDFs are also used in predictions for collisions of nuclei at
RHIC or at the LHC.
Here, we present a new framework for a global analysis of nuclear parton distribution functions at
next-to-leading-order (NLO). Then we use it to analyze the apparent differences between nuclear
correction factors (FFe

2 /FFe,0
2 ) coming from charged lepton data and from neutrino DIS data.

2. NPDF global analysis framework

We introduce the global analysis framework and the analysis of NPDFs using the charged
lepton DIS and Drell-Yan data for a variety of nuclear targets. The analysis is performed based on
the same principle as the proton analysis of [9]. The input distributions are parameterized as

x fk(x,Q0) = c0xc1(1− x)c2ec3x(1+ ec4x)c5 k = uv,dv,g, ū+ d̄,s, s̄ , (2.1)

d̄(x,Q0)/ū(x,Q0) = c0xc1(1− x)c2 +(1+ c3x)(1− x)c4 ,

at the scaleQ0 = 1.3 GeV. The different nuclear target materials are treated by introducing anuclear
A-dependence in theck coefficients:

ck → ck(A) ≡ ck,0 + ck,1
(

1−A−ck,2
)

, k = {1, . . . ,5} . (2.2)

The advantage of this construction is that in the limitA → 1 we recover the original proton parame-
terization withck,0 as the coefficients. Using this framework, we construct a global fit to the charged
lepton DIS data and Drell-Yan data (for details see [11]). The coefficients ck,0 were based on the
results of the proton global fit presented in [10] where the influence of nuclear targets on proton
PDFs was minimal. In the analysis, we have applied standard kinematic cuts ofQcut = 2.0 GeV, and
Wcut = 3.5 GeV. Performing the global fit to the data (708 data points after the cuts areapplied),
we obtain an overallχ2/dof of 0.946 with about 32 free parameters. The results of the global
fit, the coefficientsck,1 andck,2, give theA-dependence of the generalized coefficientsck(A) (see
Fig. 1) and these coefficients determine the parton distribution functions forbound partons inside
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Figure 1: TheA-dependent coefficientsck(A), k = {1,5}, for the up-valence (a) and down-valence PDF (b)
as a function of the nuclearA. The different coefficientsck(A) correspond to following lines:c1- solid (red)
line, c2- long dashed (blue) line,c3- dashed (green) line,c4- dash-dotted (magenta) line,c5- dotted (brown)
line.

a nucleus (see Fig. 2). The nuclear effects are typically given in terms ofnuclear correction factors
R[F l±Fe

2 ] ≡ FFe
2 /FFe,0

2 and we show the nuclear correction factors resulting from our fit to charge
lepton data in Fig. 3. The nuclear structure functionsFFe

2 andFFe,0
2 are both defined according to

F(A,Z)
i (x,Q) =

Z
A

F p/A
i (x,Q)+

(A−Z)

A
Fn/A

i (x,Q) . (2.3)

These structure functions can be computed at next-to-leading order as convolutions of the (nuclear)
PDFs with the conventional Wilson coefficients,i.e., generically

F(A,Z)
i (x,Q) = ∑

k

Cik ⊗ f (A,Z)
k . (2.4)

The difference betweenFFe
2 andFFe,0

2 is in using different PDFs (FFe
2 uses nuclear PDFs andFFe,0

2

uses proton PDFs) in Eq. (2.4).

3. Nuclear correction factors from neutrino DIS

The result of an analysis of NuTeV neutrino DIS cross-section data performed in [12] showed
a deviation from the standard result of the analysis of charged lepton DISand DY data. This
can be clearly seen when comparing the different nuclear correction factors in Fig. 3. As the
different nuclear correction factors were not obtained in completely identical frameworks, we first
used the NPDF framework introduced in the previous section and in [11] to re-analyze the NuTeV
neutrino DIS data. Using the same kinematic cuts, we obtain a fit to 2310 neutrinoand anti-neutrino
cross-section and di-muon data points. The result of the fit (see Fig. 4b)is in agreement with the
previous analysis and confirms the difference between the nuclear correction factors mainly in the
intermediatex-region. The obvious difference poses a question if a compromise nuclear correction
factor can be found which would accommodate both the charged lepton and neutrino data. In order
to construct a compromise fit we use all data used for the charged lepton fit (708 data points),
NuTeV and Chorus neutrino and anti-neutrino cross-section data and NuTeV and CCFR di-muon
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Figure 2: We display the (a)xuv(x), (b) xdv(x), (c) xg(x) and (d)xs(x), PDFs for a selection of nuclearA
values ranging fromA = {1,207}. We chooseQ0 = 1.3GeV. The different curves depict the PDFs of nuclei
with the following atomic numbers (from top to bottom in (c) at x = 0.01) A = 1,2,4,8,20,54, and 207.

data (3134 data points). To avoid the neutrino data to dominate the analysis, weapply a weight
factor 1/2 to theχ2 coming from the neutrino and anti-neutrino cross-section data. The resultof
such a compromise fit with the weight 1/2 is shown in Fig. 4a. Although the nuclear correction
factor from the compromise fit seems to be compatible with the charged lepton data, to draw a
firm conclusion a further investigation is necessary. A detailed analysis is postponed to the next
publication (see also analysis in [13]).

4. Conclusions

We presented a framework for a global analysis of NPDFs at next-to-leading order QCD
closely linked to a proton analysis. We used this framework to analyze the discrepancies between
the nuclear correction factors stemming from the analysis of charged leptonDIS and DY data and
the ones coming from neutrino DIS data. We confirm the differences found in a previous analysis
and we presented preliminary results on compromise fit combining charged lepton and neutrino
data. A much more detailed analysis is postponed to a later publication.
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Figure 3: The nuclear correction factor as a function ofx for Q2 = 20GeV2. Figure-(a) shows the fit (fit
C) using charged-lepton–nucleus DIS and DY data whereas Figure-(b) shows the fit using neutrino-nucleus
data (fit A2 from Ref. [12]). Both fits are compared with the SLAC/NMC parameterization, as well as fits
from Kulagin-Petti (KP) (Ref. [8]) and Hirai etal. (HKN07), (Ref. [5]).
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Figure 4: As above but here Figure-(a) shows a compromise fit using all charged lepton and neutrino data
with neutrino cross-section data weighted down by a factor of 1/2 whereas Figure-(b) shows the fit using
only neutrino and anti-neutrino DIS data.

[3] Pavel M. Nadolsky et al.Phys. Rev., D78:013004, 2008, 0802.0007.

[4] P. Jimenez-Delgado and E. Reya.Phys. Rev., D79:074023, 2009, 0810.4274.

[5] M. Hirai, S. Kumano and T. H. Nagai,Phys. Rev., C76:065207, 2007, 0709.3038.

[6] K. J. Eskola, H. Paukkunen, and C. A. Salgado.JHEP, 04:065, 2009, 0902.4154.

[7] D. de Florian and R. Sassot.Phys. Rev., D69:074028, 2004, hep-ph/0311227.

[8] S. A. Kulagin and R. Petti.Nucl. Phys., A765:126–187, 2006, hep-ph/0412425.

[9] J. Pumplin et al.JHEP, 07:012, 2002, hep-ph/0201195.

[10] J. F. Owens et al. 2007, hep-ph/0702159.
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