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To study scattering amplitudes at high-energy, the T-product of two currents can be expanded in

terms of coefficient functions (impact factors) and matrix elements of “composite color dipoles”

made of Wilson line operators with rapidity cutoff preserving conformal invariance. In the lead-

ing order, the high-energy evolution of color dipoles is governed by the non-linear Balitsky-

Kovchegov (BK) equation. To describe the high-energy amplitudes in the next-to-leading order

(NLO) one needs to know the coefficient function (“impact factor”) and the evolution of corre-

sponding Wilson-line operators. Using the high-energy OPE, we find the next-to-leading order

(NLO) correction to the BK equation and calculate the impactfactor for virtual photons in deep

inelastic scattering.
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1. Introduction

Wilson line operators are the effective degrees of freedom for the description of high-energy
scattering in gauge theories (for a review, see Ref. [1,2]).Indeed, at high-energy (Regge limit) par-
ticles move along their straight-line classical trajectory and the only quantum effect is the eikonal
phase factor acquired along this propagation path. In QCD, for fast quarks or gluons scattering off
some target, this eikonal phase factor is a Wilson line - an infinite gauge link ordered along the
straight line collinear to particle’s velocitynµ :

Uη(x⊥) = Pexp
{

ig
∫ ∞

−∞
du nµ Aµ(un+x⊥)

}

(1.1)

whereAµ is the gluon field of the target,x⊥ is the transverse position of the particle which remains
unchanged throughout the collision, and the indexη is the rapidity of the particle. The high-
energy behavior of QCD amplitudes can then be studied in the framework of the evolution of color
dipoles. We consider the small-x behavior of structure functions of deep inelastic scattering (DIS):
the virtual photon decomposes into quark and antiquark pairwhich propagate along the straight
lines separated by transverse distance and forms a color dipole - two-Wilson-line operator:

Û
η(x⊥,y⊥) = 1−

1
Nc

tr{Ûη(x⊥)Û†η(y⊥)} (1.2)

The energy dependence of the structure function is translated into the dependence of the color
dipole on the rapidityη . Although it appears to be more natural to restrict the rapidity by consider-
ing the Wilson line with the supporting line collinear to thevelocity of the fast-moving particle, we
choose to cut the rapidity integrals “by hand”: the method of“rigid cutoff” in the longitudinal direc-
tion is technically simpler and more efficient in order to getthe conformal results. Thus, the small-x
behavior of the structure functions is governed by the rapidity evolution of color dipoles [3, 4]. At
relatively high energies and for sufficiently small dipoleswe can use the leading logarithmic ap-
proximation (LLA) whereαs ≪ 1, αs lnxB ∼ 1 and get the non-linear BK evolution equation for
the color dipoles [6,7]:

d
dη

Û
η(z1,z2) =

αsNc

2π2

∫

d2z3
z2
12

z2
13z

2
23

[Û η(z1,z3)+ Û
η(z3,z2))

−Û
η(z1,z3)− Û

η(z1,z3)Û
η(z3,z2)] (1.3)

whereη = ln 1
xB

andz12 ≡ z1 − z2 etc. (we denote operators by “hat”). The first three terms in
the BK equation correspond to the linear BFKL evolution [5] and describe the partons emission
while the last term is responsible for the partons annihilation. For sufficiently lowxB the partons
emission balances the partons annihilation so the partons reach the state of saturation [8] with the
characteristic transverse momentumQs growing with energy 1/xB (for a review, see [9]).

2. Next-to-leading order photon impact factor

In the Regge limit all transverse momenta are of the same order of magnitude and conse-
quently it is natural to introduce a factorization scale in rapidity: one introduces a rapidity divide
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Figure 1: Leading-order diagrams for the small-x evolution of color dipole. Wilson lines are denoted by
dotted lines.

η which separate “fast” field from “slow” fields. Thus, the amplitude of the process is given by a
convolution of contributions coming from fields with rapidity η <Y (“fast” field) and contributions
coming from fields with rapidityη > Y (“slow” fields). As in the case of the usual Operator Prod-
uct Expansion (OPE), the integration over the field with rapidity η < Y gives us the coefficients
function while the integrations over the field with rapidityη > Y are the matrix elements of the
operators. Thus, the OPE at high-energy (Regge limit) for the T-product of two electromagnetic
currents is obtained in terms of Wilson lines

T{ ĵµ(x) ĵν(y)} =
∫

d2z1d2z2 ILO
µν (z1,z2)[Tr{Ûη

z1
Û†η

z2
}]conf

+
∫

d2z1d2z2d2z3 INLO
µν (z1,z2,z3)[tr{Û

η
z1

Û†η
z3

}tr{Ûη
z3

Û†η
z2

}−Nctr{Û
η
z1

Û†η
z2

}] (2.1)

where

[Tr{Ûη
z1

Û†η
z2

}
]conf

= Tr{Ûη
z1

Û†η
z2

}

+
αs

2π2

∫

d2z3
z2
12

z2
13z

2
23

[Tr{TnÛη
z1

Û†η
z3

TnÛη
z3

Û†η
z2

}−NcTr{Ûη
z1

Û†η
z2

}] ln
az2

12

z2
13z

2
23

(2.2)

is thecomposite dipolewith the conformal longitudinal cutoff in the next-to-leading order. The
appearance of thecomposite operatorsis due to the loss of conformal invariance of the Wilson line
operator in the NLO. Indeed, the light-like Wilson linesU(x⊥) are formally Möbius invariant and
consequently the leading-order BK equation is also conformal invariant. At NLO the Wilson line
operator are divergent and its regularization introduces adependence on the rapidity and conformal
symmetry is lost. In order to restore the conformal invariance we redefine the operator Tr{Ûη

z1Û
†η
z2 }

by adding suitableconterterms. The procedure of finding the dipole with conformally regularized
rapidity divergence is analogous to the construction of thecomposite renormalized local operator
by adding the appropriate counterterms order by order in perturbation theory. In equation (2.1) the
coefficientILO is the leading-order (LO) impact factor which has been knownfor long time, while
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Figure 2: High energy expansion of the T product of two electromagnetic currents

INLO is the NLO impact factor [15] given by

INLO
µν (x,y) = −

αsN2
c

8π7x2
∗y2

∗

∫

d2z1d2z2 U
conf(z1,z2)

{[

1

Z 2
1 Z 2

2

∂ x
µ∂ y

ν ln
∆2

x∗y∗
(2.3)

+ 2

(

∂ x
µZ1

)(

Z2∂ y
ν
)

Z 3
1 Z 3

1

[

ln
1
R

+
1

2R
−2

]

+
2
(

∂ x
µZ1

)(

∂ y
νZ1

)

Z 4
1 Z 2

2

[

ln
1
R
−

1
2R

]

−
1
2

[ ∂ x
µZ1

Z 3
1 Z 2

2

∂ y
ν ln

∆2

x∗y∗
+

∂ y
νZ1

Z 3
1 Z 2

2

∂ x
µ ln

∆2

x∗y∗

]

(

1−
1
R

)

−
1

2Z 2
2

[

(

∂ x
µ

1

Z 2
1

)

∂ y
νR+

(

∂ y
ν

1

Z 2
1

)

∂ x
µR

] lnR
1−R

−
(

∂ x
µ∂ y

ν
∆2

x∗y∗

) R3

z4
12

[ 1
R

+
3

2R2 −2
](x∗y∗

∆2

)3
+

1
R

[ ∂ x
µZ1

Z 3
1 Z 2

2

(

∂ y
ν ln

∆2

x∗y∗

)

+
∂ y

νZ1

Z 3
1 Z 2

2

(

∂ x
µ ln

∆2

x∗y∗

)

]

+ 4

(

∂ x
µZ1

)(

∂ y
νZ2

)

Z 3
1 Z 3

2

[

4Li2(1−R)−
2π2

3
+2(lnR−1)

(

lnR−
1
R

)

]

+ 2

(

∂ x
µZ1

)(

∂ y
νZ2

)

Z 3
1 Z 3

2

[ lnR
R(1−R)

−
1
R

+2lnR−4
]

+2

(

∂ x
µZ1

)(

∂ y
νZ1

)

Z 4
1 Z 2

2

[ lnR
R(1−R)

−
1
R

]

−
( ∂ x

µZ1

Z 3
1 Z 2

2

∂ y
ν ln

∆2

x∗y∗
+

∂ y
νZ2

Z 3
2 Z 2

1

∂ x
µ ln

∆2

x∗y∗

)[ lnR
R(1−R)

−2
]

+ (z1 ↔ z2)

]

− 2
z2
12⊥

Z 3
1 Z 3

2

[

4Li2(1−R)−
2π2

3
+2(ln

1
R

+
1
R

+
1

2R2 −3) ln
1
R
−

(

6+
1
R

)

lnR+
3
R
−4

]

∂ x
µ∂ y

ν
∆2

x∗y∗

}

where

∆ ≡ (x−y), x∗ = x+
√

s/2, y∗ = x+
√

s/2, R≡−
∆2z2

12⊥

x∗y∗Z1Z2

Z1 = −
(x−z1)

2

x∗
+

(y−z1)
2

y∗
, Z2 = −

(x−z2)
2

x∗
+

(y−z2)
2

y∗
(2.4)

Equation (2.3) is the analytic expression for the full NLO impact factor which was not known
before. (A combination of numerical and analytical resultscan be found in Ref. [16].) We plan
to perform the Fourier transform in momentum space which will be useful for phenomenological
studies.

In order to obtain the NLO evolution for the DIS amplitude in QCD one needs the NLO
evolution equation of color dipoles with respect to rapidity which was found in [14], then solve the
corresponding evolution equation, and finally assemble theresult for structure functions: take the
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initial conditions at low energy (rapidity), evolve color dipoles to higher rapidity and multiply the
result by the corresponding impact factor. The work is in progress.

In Ref. [13] the full program for the calculation of the NLO evolution amplitude is performed
for theN = 4 SYM theory for two BPS-protected currents.

The author is grateful to the organizers of DIS 2010 and in particular to D. Colferai for financial
support. This work is supported by the grant ANR-06-JCJC-0084.
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