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1. Introduction

Observables containing final-state jets are importantdgeal precision studies at high en-
ergy colliders due to their large production cross sectio@slculating perturbative higher or-
der corrections to jet production cross sections requirggstematic procedure to extract infrared
singularities from real radiation contributions. Remayithese singularities requires subtraction
terms that approximate the matrix element in all singulauits, and are sufficiently simple to be
integrated over the corresponding phase space analyticd#ifter this integration, the infrared
divergences of the subtraction terms become explicit aadrttegrated subtraction terms can be
added to the virtual corrections yielding an infrared fimésult . Since experimental data of jet ob-
servables are reaching an accuracy of a few percent or battarrate precision studies must rely
on theoretical predictions that have the same precisiorsotme cases, this requires corrections at
the next-to-next-to-leading order (NNLO) level in pertatige QCD .

In ref. [3], an NNLO subtraction method was developed forestasbles with partons in the
final state only, the antenna subtraction method. It cootstrine subtraction terms from the so-
called antenna functions. The latter describe all unresbpartonic radiation between a hard pair
of colour-ordered partons, the radiators. The antennatiime are derived systematically from
physical matrix elements and can be integrated over thetoifi@ed phase space. At the NLO
level, this formalism can handle massless partons in thialior final states [7], as well as massive
fermions in the final state [4]. For processes with initi@ts hadrons, NNLO antenna subtrac-
tion terms have to be constructed for two different casely ome radiator parton is in the initial
state (initial-final antenna) or both radiator partons aréhe initial state (initial-initial antenna).
Recently, in [5, 6], NNLO initial-final antenna functions meederived and integrated over their fac-
torized phase space . The case with two radiators in thalisiite is however still outstanding .

In this contribution, we discuss the derivation of NNLO iakinitial antenna functions. We
briefly describe the construction of the subtraction termtbthe required phase space transforma-
tions and discuss how the phase space integrals for imite} antennae can be performed using
multi-loop techniques .

2. Subtraction terms for initial-initial configurations

At NNLO, there are two types of contributions tejet observables that require subtraction:
the tree-leveim+ 2 parton matrix elements (where one or two partons can becomesolved),
and the one-loopn—+ 1 parton matrix elements (where one parton can become uved}o In
the tree-level double real radiation case, we can distgigfour different types of unresolved
configurations depending on how the unresolved partonscémarcconnected to the emitting hard
partons (see ref. [3] for a detailed description of the fases). In this contribution, we focus on
the case with two colour-connected unresolved parton®(calonnected). This is the only case
where new ingredients are needed, namely the four-paritalimitial antenna functions. The
unintegrated ones can be obtained by crossing two partahe toitial state in the corresponding
final-final antenna functions, which can be found in [3], aatléhthen to be integrated analytically
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over the appropriate antenna phase space . The corresgddNinO antenna subtraction term, to
be convoluted with the appropriate parton distributionctions for the initial state partons, for a
configuration with the two hard emitters in the initial stgpartonsi andl with momentap, and
p2) can be written as:

colour—connecte 1
do_l\sl7N|lO t d: N 22d¢m+2(k17"'7km+2; pla p2)—2

X [z (XP. i = X0 X — X2 X0 )
J
X | M(Ka, o KL, Kmg2i X PL, XeP2) 2IV (Ka, . KL, Kmg2) |- (2.2)

The subtraction term in eq. (2.1) is constructed such thatreesolved limits of the four-parton
antenna functior)(iﬁjk are subtracted, so that the resulting subtraction termtigeaonly in its
double unresolved limits, which explains the presence efptoducts of three-parton antennae.
The subtraction terms for all the other unresolved configuma can be constructed using tree-
level three-parton antenna functions. In eq. (2.1), the &mitennaeq? ., X°;, andx?; depend

on the original momentay, po, kj, k¢, whereas the rest of the antenna functions as well as the jet
functionJ and the reduced matrix element,, depend on the redefined momenta from the phase
space mapping, labeled byJ.... In addition to that, the reduced matrix elements depend on
the momentum fractions, andx, , which we define later. The normalization factdf includes

all QCD-independent factors as well as the dependence orettemalized QCD couplingys,

> m+2 denotes the sum over all configurations with- 2 partons, &> is the phase space for an
(m-+ 2)-parton final state il = 4 — 2¢, and finally,Sy. 2 is @ symmetry factor for identical partons

in the final state . The antenna functions can be integratalytésally, provided we have a suitable
factorization of the phase space. The factorization isiplesthrough an appropriate mapping of
the original set of momenta. These mappings interpolatedmat the different soft and collinear
limits that the subtraction term regulates . They must §atigerall momentum conservation and
keep the mapped momenta on the mass shell.

A complete factorisation of the phase space into a conasutf anm particle phase space
depending on redefined momenta only, with the phase spacatongj, k, can be achieved with
a Lorentz boost that maps the momentgra p; + p2 —Kj — kg, with ¢? > 0, into the momentum
G = x1p1+X2p2, Wherexy » are fixed in terms of the invariants as follows [7]:

1
Xt — <512—Sj2—3k2 Slz—Slj—Slk—sz—SlQ+Sjk>2

S12 S12—S1j — S1k
1
_ . _ A — Sio — S; 2
Xo = <512 S1j — Sk S12—S1j — Stk —Sj2 — Sk + jk) . 2.2)
S12 S12—Sj2 — Sk

These last two definitions guarantee the overall momentumeswation in the mapped momenta
and the right soft and collinear behavior . The two momentaations satisfy the following limits
in double unresolved configurations:
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1. jandk soft: x; — 1,% — 1,

2. jsoftandky = z1p1: X1 — 1—2z, % — 1,

3. kj=zprandk¢=2p2: X1 = 1-21, % — 1-2,
4. Kj+ke=2z1p1: X1 — 1—271, % — 1,

and all the limits obtained from the ones above by the exoharfigp, with p, and ofk; with k.
The factorized m+ 2)-partons phase space into arpartons phase space and an antenna phase
space is given hy:

APy 2(Ke, ..., Kmy2; P1, P2) = dPm(Ky, ..., Kj1,Kjpa, .o K1, Kiga, - Kig2s Xepr, X2 p2)
x 7 8(qF — X1 %2 S12) 8(2(Xe P2 — X1 P1).0)
x [dlk;] [dkd dxy ez, 2.3)

where[dk] = d%;/(2m)@-Y 5+ (k?), and_# is the Jacobian factor defined by
F =312 (Xa(S12— S1j — S1) + X2(S12 — S2j — S«)) -

The next step is to integrate the antenna functions over filaetorized phase space.

3. Calculational approach for the double real radiation cag2 — 3

All the initial-initial antennae have the scattering kir@tios p; + p2 — kj +kq+ g, whereq
is the momentum of the outgoing particle, for example theaardzoson in a vector boson plus jet
process . Double real radiation antenna integrals areatkfrom squared matrix elements and can
be represented by forward scattering diagrams as in thenfioly figure:

The two delta functions in eq.( 2.3) can be represented as-stadl conditions of fake particles
and are shown in the previous picture as a thick solid linprégenting a massive particle with
massM = X1 X2 S12) and a dashed line (representing a massless particle) . allbigs us to use
the optical theorem to transform the initial-initial ant@nphase space integrals into cut two-loop
box integrals and, therefore, use the methods developeatii-loop calculations [8,9]. Up to
8-propagator integrals with 4 cut propagators are gergtriat¢his way . The calculation of the
integrated antennae corresponds here to the evaluatiomeofuged set of master integrals. We
found 30 of them, obtained using integration-by-part (IBRY Lorentz identities, following the
Laporta algorithm . We then calculate this small set of iraegusing the method of differential
equations. The simplest master integral is the two loop bitk all the internal lines cut and
defined as follows
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. = 1(Xg, %) = /ddqddkj ddkk5d(p1+p2—Q—kj—kk) X

5t (k) 8F (kg) 8" (aF —M?) 3(2 (xep2—x1p1).0) . (3.1)

As we have discussed in section 2, the phase space integralgherefore the master integrals)
have to be studied in four different regions of the phaseepapending on the values xf and
X2, namely:

e X3 # 1, xo # 1, we refer to this region as the hard one
e X3 =1, % #1,andx; # 1, xp = 1, referred to as the collinear region
e X3 = 1, X, = 1, is the soft region.

In the hard region, the solution of the system of differdrdguations yields two-dimensional gen-
eralized harmonic polylogarithms . Theexpansion is needed up to transcendentality 2. In the
collinear regions, additional/x coefficients may be generated and the epsilon expansiomes do
up to transcendentality 3, whereas in the soft region aaditi 1/£? coefficients may appear and
the expansion in epsilon is pushed to transcendentality 4.n@te however that the calculation
of the masters in the soft and collinear regions, althougitded with deeper expansionsénis
simpler than in the hard region, and only one-dimensionahbaic polylogarithms are needed in
the collinear regions . In the soft region, a direct caldatais possible giving closed form results
in € in the form of gamma functions . The boundary conditions far differential equations are
obtained, in most of the cases, by studying the master miegr one of the collinear limits . Oth-
erwise the soft limit is used .

In a first step towards the calculation of all the integratetial-initial antennae for the 2> 3
tree-level double real radiation case, we have focused lamelcrossings of two partons from
the following final-final antennaeB)(q,q,q,q), E(a,q,q,9) andH(q,q, ¢, q) defined in [3],
where the index 4 refers to four partons . There are 13 mastgrals involved in their calculation,
and the ones without irreducible scalar products are shovAgi. 1.

4. Outlook

In this contribution, we have discussed the extension oatltenna subtraction formalism to
the initial-initial configurations, including the requitgphase space factorisation and mappings.
We have focused on the -2 3 tree-level double real radiation contribution. In a firstpsto-
wards the derivation of the complete set of integratedahitiitial antennae, we considered all
the crossings of the subset of 4-parton antenBdég, o, q,q), ES(q,9,q,9) andHJ(q,0,q, ) -
Completing the full set of NNLO antenna functions will alldkae construction of subtraction terms
needed for the evaluation of jet observables at hadrordeodli.
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Figure 1: Master integrals for the phase space integration of the tree-level initial-initial Bg, HflJ and
Eg type antennae at NNLO. Thick solid and dashed lines refer to the conditions on the phase
space integral implemented as auxiliary propagators . All the internal lines are massless except for
the thick solid line . Only the integrals without numerators are shown in this picture..
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