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1. Introduction

Studies of jet-shape variables and in particular jet makaee long been a standard part of
the program of testing perturbative QCD. In the context ef itiHC, jet-shape and sub-structure
techniques are also rapidly gaining impetus for example mgans of discovering new particles
that are highly boosted and hence whose decay products rdaypein a single jet.

In this paper we concentrate on what is known about jet shapeésn particular jet masses
for QCD jets in all orders resummed perturbation theory. & LHC one may be interested
for instance in the mass or shape of one or more jets produck@jh pr jet events of a given
jet multiplicity. Recently it was suggested to study suckeyables with the aim of resumming
logarithms in the shape variables for certain jets in njettievents while leaving the shape of
other jets unmeasured [1, 2]. Resummed predictions wergdaw aiming at next-to—leading or
single-logarithmic accuracy in the shape variable distiims, within the context of soft-collinear
effective theory (SCET). However as was emphasised in Bgifgle logarithmic accuracy for
such observables necessitates a study and inclusion ajlobat logarithms [4, 5]. Below we shall
examine this issue and comment on the size of the non-gldieat @s well as looking at the role
of the jet algorithm which is also significant to single-lagfamic accuracy.

2. Individual jet massesin multijet events and non-global logarithms

We can consider either the jet-mass in single-jet inclustuelies or focus on events of fixed
multiplicity where we may pick a subset of all jets for studg,was the case in Refs. [1, 2].

To illustrate our points here we examine a simple situativoliving highpr dijet production
where we measure the mass of one of the jets while leavingthie® anmeasured. We can take
the jets to be produced at zero rapidity wrt the beam withbanhging our conclusions. We shall
also consider the limit of narrow well-separated jets ingbase that the jet radilscan be taken
to be small compared to the interjet separatlpn= 1 — cos6;;. We shall thus neglect terms of
relative orderRZ/Aij. In this limit we find that owing to QCD coherence a rather damgicture of
jet evolution emerges [3]. In particular initial state ratithn only contributes terms to the jet mass
that vanish in thdr — 0 limit and hence can be ignored in our approximation. Wel slzaity out
fixed-order calculations below, in the soft approximatibath at LO and NLO accuracy and from
these calculations infer the form of our resummed results.

3. LO estimatein soft approximation

A simple eikonal leading-order calculation for the crosstion for normalised jet mas$/# /Q?
to be below some value [3] produces
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whereQ is the hard scale of the process, in this case thpijjelhe above result holds no surprises
— it is the familiar double-log estimate for jet-mass, wiRlbeing the jet radius. Such double loga-
rithmic terms exponentiate and produce the Sudakov pedleimass distribution. The calculation
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can be easily extended to account for hard emission cotliteethe jet, which is a relevant source
of single logarithms. However for the jet mass distributadrsingle-log accuracy there is more to
the story than exponentiation of a single gluon. We repotthisin the next section but note that
at the level of terms in the conventional Sudakov exponearetis no involvement of the details of
the algorithm except the radils— all algorithms are identical at this level.

4. NLO estimates and non-global logarithms

Beyond leading order there is the issue of the soft gluongaripattern as well as its interplay
with the jet algorithm both of which lead to the appearanceari-trivial effects. A simplified
emission pattern where soft gluons are coupled directlpedard emitting ensemble is sufficient
at the Sudakov level. However as was shown in Refs. [4, 5] dor-global observables that are
affected by soft radiation in a delimited phase space regimm as the interior of a jet the pattern
of real-virtual cancellations that ensure the exponaptatf a single-gluon is spoiled. One ends up
needing to consider multiple soft gluon emission from arnteatlly complex ensemble involving
not just the hard partons but also all subsequent soft emnssintil one hits the veto scale (the jet
mass). This complication starts at the two-gluon level hith soft correlated two gluon emission
term which for the quark dijets we assume here, h@s@u colour factor.

Moreover from the two gluon level onwards the details of #tegjgorithm also become im-
portant due to soft gluon clustering effects. One algorithinere these effects can be ignored is the
antik; algorithm in which soft gluons cluster to the hard jets lomgdoe their self-clustering can
take place, leading to circular jets. In this algorithm ibyes possible, at least in the lafyglimit,
to address relatively easily the complex dynamics leadingon-global logarithms. Carrying out
the calculation for the emission of two soft gluons and fagug on theCrCa piece we obtain

2
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The above equation needs some explanation. Firstly we htreeluced a paramet&p analo-
gous to the parametérin Refs. [1, 2], which corresponds to the maximum energy fhgndutside
the hard highpr jets. Limiting Eg thus corresponds to restricting the hard jet multiplicityile for
the inclusive jet mass ca$® should be understood to be of the order of the hard scalepiesty
jet pr. Here we shall focus on the inclusive jet mass dage pr while in Ref. [3] we also dealt
with resummation of logarithms ipy /Eg. We note that the above equation is correct with neglect
of additional terms suppressed by power&afhich are beyond our approximation. With this ap-
proximation in place the coefficient’ /3 emerges and is treame coefficierds the corresponding
one that appears for the hemisphere jet masses. This faot & ¢oincidence but a result of the
dominance of the collinear singularity that appears due/tt;lk,) terms in the squared matrix
element for the emission of soft gluoks andk,. The non-global logarithms come essentially
from the edge of the jet and have an additional analytic dégece on the jet radiu8 which can
be ignored in a smaR approximation.

In the case of the hemisphere jet-mass studied in Ref. [4jghalmal logs come from a large-
angle boundary i.e that between the hemispheres. In thergrease this boundary is replaced by
the circular jet boundary but the coefficients and resunonaif non-global terms will be the same
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Figure1: Jet mass distribution with (blue curve) and without nonbgldogarithms (red curve) witBy = 60
GeV andR=0.4.

as for the hemisphere case up to terms that vanishRvitthe resummed result for the non-global
piece, obtained numerically and in the lafgglimit, can then be essentially taken from Ref. [4]

and reads 214 (at)?
+ (&

with t being the single-logarithmic evolution varialble %T fel,l_ d—xxas(xQ) and wherd = In (2EoR?) /(Qp),
a = 0.85Ca, b =0.868Ca, c = 1.33. The non-global facto multiplies the result obtained by ex-
ponentiating the one-gluon result (3.1) after taking aotaf hard collinear emissions and the
running coupling.

The role of non-global logarithms in the jet mass distribatcan be seen from Fig. 1. The
figure is forQ = 500 GeV which translates here to a 250 Ge\fgetwith R= 0.4 andEy = 60 GeV.
There is roughly a twenty percent effect on peak height ativalues of the parameters and in fact
we find no significant variation in this number whggis lowered due to the increasing importance
of non-global logs inpr /Eg as reported in Ref. [3]. The general situation where one oreaghe
shapes of one or more jets in multi-jet production at highsve@rse momenta can be addressed by
modifying the resummed result based on naive single-gluporgentiation with a product of form
factors from each jet, each of which has the forns@j reported above. The above form is correct
up to terms that vanish as powersRf/A; j with Rthe jet radius andy; the interjet separation.
There is a clear physical reason for the emergence of thdesimagults reported here. In the small
R limit each jet evolves independently of others due to theidance of collinear emissions — the
interesting physics (NLL contribution to jet masses) corsesarately from the boundary of each
jet which falls, at smalR, within the collinear regime.

5. Other jet algorithms

Let us now comment on the situation in jet algorithms othantthe anti. Focussing on
sequential recombination algorithms such as the Camb#dghen (C-A) and thd; algorithm
we encounter beyond leading double logarithms a much marglex situation. Appleby and
Seymour were the first to point out and numerically study tile of k. clustering on non-global
logarithms (for the case of gaps between jets). Their cemhs were that the effect &f cluster-
ing reduced the non-global component because a harder gjusrcapable of clustering a softer
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emissionky in configurations that may otherwise have generated signifioon-global effects.
Similar conclusions will apply for the C-A algorithm. It wasibsequently found that clustering
also had an impact at NLL accuracy on real-virtual candelatin the independent emission (as
opposed to correlated emission) or global term [6]. WhilRefs. [6, 7] the clustering gave terms
that vanished withR, in the present case owing to the collinear singularitidsveat for jets at
smallR, the effect is independent & We find that for a quark jet the contribution of clustering to
the p distribution starts at’(as)? and the first such term reads

d squster_ o 708C? (E)Z1 in -

dp? F\2n/ pp
which is a relevant term for resummations aiming at singtgdccuracy in the mass cross-section
3(p) and arises purely due to the clustering inherent in the gkgor Likewise similar effects will
be present for the C-A case. Single logarithmic terms geeeray clustering were shown to be
resummable for the gaps between jets case [7] but a simitzaurlation has not yet been carried out
for the present case of jet masses.

(5.1)

6. Conclusions

In conclusion we point out that NLL resummed predictions banmade for quantities in-
volving the shapes of jets produced in complex multi-jetése@nd using the anki-jet definition,
which include non-global logarithms in the larlye limit. Up to correction terms varying as pow-
ers of the jet radius there is an independent non-globabifagising from the boundary of each
measured jet. The product of such factors multiplies th@egptiated “single-gluon” result which
is relatively straightforward to obtain. We do not expedjleeted terms varying as powersiRbr
those suppressed agN? to make a visible difference to our predictions evenRas large as.d
Phenomenological investigations can thus be carried dng tilse analytical results after matching
to fixed-order to obtain the high-mass tail and assessingoteeof non-perturbative effects.

References
[1] S.D. Ellis, A. Hornig, C. Lee, C. K. Vermilion and J. R. Vghl, “Consistent Factorization of Jet
Observables in Exclusive Multijet Cross-Sections,” arB812.0262 [hep-ph].

[2] S.D. Ellis, A. Hornig, C. Lee, C. K. Vermilion and J. R. V¢, “Jet Shapes and Jet Algorithms in
SCET,” arXiv:1001.0014 [hep-ph].

[3] A.Banfi, M. Dasgupta, K. Khelifa-Kerfa and S. Marzani,ith-pr jet shapes, non-global
logarithms and jet algorithms,” arXiv:1004.3483 [hep-ph]

[4] M. Dasgupta and G. P. Salam, “Resummation of non-gloliZD@bservables,” Phys. Lett. B2
(2001) 323 [arXiv:hep-ph/0104277].

[5] M. Dasgupta and G. P. Salam, “Accounting for coherendaterjet E(t) flow: A case study,” JHEP
0203 (2002) 017 [arXiv:hep-ph/0203009].

[6] A.Banfi and M. Dasgupta, “Problems in resumming integieergy flows withs clustering,” Phys.
Lett. B 628 (2005) 49 [arXiv:hep-ph/0508159].

[7] Y. Delenda, R. Appleby, M. Dasgupta and A. Banfi, “On QCBummation withg clustering,” JHEP
0612 (2006) 044 [arXiv:hep-ph/0610242].



